COMPLEX GEOMETRY OF TEICHMÜLLER DOMAINS

SUBHOJOY GUPTA AND HARISH SESHADRI

Abstract. We say that a domain $\Omega \subset \mathbb{C}^N$ is a Teichmüller domain if Ω is biholomorphic to the Teichmüller space of a surface of finite type. In this survey we discuss the classical construction of such a domain due to Bers, outline what is known of its structure, and subsequently focus on recent developments concerning the Euclidean convexity of Teichmüller domains.

1. Introduction

The complex analytical theory of Teichmüller spaces was initiated in the early works of Teichmüller (see for example [AP16]) but it was not until the work of Ahlfors-Bers in the 1960s that they were realized, and studied, as bounded domains in complex Euclidean space (see [Ber81]).

In this survey we shall assume that the complex structure in Teichmüller space is acquired through the Bers embedding that we describe in §3; for more intrinsic characterizations see, for example, [Nag88] or [GL00]. The biholomorphism type of the image Bers domain, or the nature of their boundaries is still mysterious, and we shall mention some open questions. Throughout, we consider the case of Riemann surfaces of finite type; see [FM09] for the case of surfaces of infinite type.

More generally, we define a Teichmüller domain to be an open connected set in a complex Euclidean space that is biholomorphic to the Teichmüller space of finite type. It is known that Teichmüller domains are pseudoconvex. Perhaps more intriguing is their similarity to convex domains, a striking manifestation of which is the existence of complex geodesics. We refer the reader to the excellent survey article of M. Abate [AP99] for a systematic study of this aspect of the geometry of Teichmüller domains. In this article we shall elaborate on some recent results of V. Markovic and the authors that are in the opposite direction, proving some non-convex features of Teichmüller domains.

An important tool for probing the structure of bounded domains is an invariant metric. These are, by definition, biholomorphism-invariant Finsler metrics associated to domains. While there are several such metrics, which are important in other contexts, the Kobayashi and Carathéodory metrics are particularly relevant to Euclidean convexity of domains. In fact, one knows, by the fundamental work of L. Lempert, that these metrics coincide if the domain is convex.
We discuss two recent developments regarding these issues: the first is the result of V. Markovic [Mar] that the Kobayashi and Carathéodory metrics on the Teichmüller space of a closed surface of genus greater than one, are not equal. Hence such a Teichmüller domain is never convex. Second, we give a brief exposition of the main theorem of [GS] that, in fact, a Teichmüller domain is never locally strictly convex at any boundary point.

It would be interesting to investigate if the techniques in these papers can be used to ascertain the finer structure of the boundary of a Teichmüller domain.

Plan of the article. In §2 we recall some background relevant to this survey, and in §3 describe the Bers embedding of Teichmüller space, summarize what is known about the structure of the resulting Bers domain, and mention some open questions. In §4 we introduce the Kobayashi, Carathéodory and Teichmüller metrics and the notion of complex geodesics / Teichmüller disks. In §5, we discuss the incompatibility of Teichmüller spaces with product complex structures and symmetric spaces. In §6, we survey some results about pseudoconvexity and convexity of Teichmüller spaces. The concluding sections (§7 and §8) are expositions of works of Markovic and Gupta-Seshadri.

Acknowledgements. SG acknowledges support of the center of excellence grant ‘Center for Quantum Geometry of Moduli Spaces’ from the Danish National Research Foundation (DNRF95) - this work was started during a stay at QGM at Aarhus, and he is grateful for their hospitality. His visit there was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Union Framework Programme (FP7/2007-2013) under grant agreement no. 612534, project MODULI - Indo European Collaboration on Moduli Spaces.

2. Preliminaries

We start with some basic definitions. We refer the reader to [Ahl06] or [Hub06] for an excellent exposition of the following notions.

Let X be a Riemann surface of genus g and n punctures such that $2g - 2 + n > 0$. Let K_X denote the canonical bundle of X.

A holomorphic quadratic differential on X is a holomorphic section of $K_X \otimes K_X$. Let $\mathcal{Q}(X)$ be the space of holomorphic quadratic differentials on X.

A Beltrami differential on X is a L^∞-section of $K_X^{-1} \otimes K_X$. We denote the space of Beltrami differentials on X by $\mathcal{BD}(X)$. In a holomorphic chart $U \subset X$, an element of $\mathcal{BD}(X)$ has the form

$$\mu \frac{dz}{\bar{z}}$$
where $\mu \in L^\infty(U)$ is called a Beltrami coefficient.

By the Uniformization Theorem, the universal cover of the surface X is the upper half plane \mathbb{H}, and we have

$$X = \mathbb{H}/\Gamma$$

for Γ a Fuchsian group, namely a discrete subgroup of $\text{Aut}(\mathbb{H}) = \text{PSL}_2(\mathbb{R})$.

A quasiconformal map between two Riemann surfaces X and Y is a homeomorphism $f : X \to Y$ with weak partial derivatives (in the sense of distributions) that are locally square-integrable, such that the Beltrami coefficient

(1) $$\mu = \frac{f_z}{\overline{f_z}}$$

satisfies $\|\mu\|_\infty < 1$. Such a map lifts to a quasiconformal map

$$\tilde{f} : \mathbb{H} \to \mathbb{H}$$

that extends to a homeomorphism from $\mathbb{H} = \mathbb{H} \cup \mathbb{R}$ to itself. The corresponding Beltrami coefficient $\tilde{\mu}$ then lies in the open unit ball of the complex Banach space of bounded Beltrami coefficients

$$\mathcal{BD}_\Gamma(\mathbb{H}) = \{ \tilde{\mu} \in L^\infty(\mathbb{H}) : \tilde{\mu} \text{ is } \Gamma \text{ - invariant} \}$$

From this perspective, one can define Teichmüller space by considering quasiconformal maps from a fixed basepoint, up to homotopy (or isotopy) of the maps relative to the punctures:

$$\mathcal{T}_{g,n} = \{(Y, k) : Y \text{ is a Riemann surface, } k : X \to Y \text{ is quasiconformal map } \}/\sim$$

where $(Y, k) \sim (Z, h)$ if and only if there is a conformal homeomorphism $c : Y \to Z$ such that the composition

$$f = h^{-1} \circ c \circ k : X \to X$$

is a quasiconformal map that lifts to a map $\tilde{f} : \mathbb{H} \to \mathbb{H}$ extending to the identity on \mathbb{R}. The last condition is equivalent to the map f being homotopic to the identity map.

The foundation for the complex-analytic theory of Teichmüller spaces is the Measurable Riemann Mapping Theorem (see [Ahl06] for an exposition):

Theorem 2.1 (L. V. Ahlfors-L. Bers-C. Morrey). Let $\hat{\mathbb{C}}$ be the Riemann sphere and let $\mu \in L^\infty(\hat{\mathbb{C}})$ satisfy $\|\mu\|_\infty < 1$. Then there is a quasiconformal map

$$f^\mu : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$$

with Beltrami coefficient μ, that is, satisfying the Beltrami equation (1). Such a solution is unique up to a post-composition by a Möbius transformation $A \in \text{Aut}(\hat{\mathbb{C}})$.
Moreover, the solutions vary analytically in the parameter $\mu \in L^\infty(\hat{\mathbb{C}})$, namely, for any fixed $z \in \hat{\mathbb{C}}$, the assignment
$$z \mapsto f^\mu(z)$$
is analytic in μ.

3. The Bers embedding

3.1. Construction of the embedding: As earlier, we fix a Riemann surface $X = \mathbb{H}/\Gamma$. In this section we describe the Bers embedding
$$B_X : \mathcal{T}_{g,n} \to \mathbb{C}^{3g-3+n}.$$We refer to the image as the Bers domain. The fact that the complex structure on $\mathcal{T}_{g,n}$ acquired via this embedding does not depend on the choice of basepoint X, is due to the analytical dependence of parameters in Theorem 2.1.

The starting point is the Simultaneous Uniformization Theorem of L. Bers ([Ber60]) which associates to a point $(Y, g) \in \mathcal{T}_{g,n}$ a quasiconformal map
$$F : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$$
that fixes $\{0, 1, \infty\}$, and conjugates the action of Γ to the action of a Kleinian group $\Gamma_Y < \text{Aut}(\hat{\mathbb{C}}) = \text{PSL}_2(\mathbb{C})$, such that
- F is conformal on \mathbb{H}_-, where \mathbb{H}_\pm denotes the upper / lower half-plane respectively, and
- Γ_Y leaves invariant the images of \mathbb{H}_- and \mathbb{H}_+ with quotients \overline{X} and Y respectively.

The idea of the proof is simple: lift the Beltrami coefficient $\mu(g)$ to the upper half plane \mathbb{H}_+, and extend to a Beltrami coefficient $\hat{\mu}$ on $\hat{\mathbb{C}}$ by defining it to be identically zero on \mathbb{H}_-. The map F above is then the normalized solution to the Beltrami equation with the Beltrami coefficient $\hat{\mu}$. Since $\hat{\mu}$ is Γ-invariant, we have, by the uniqueness of solutions (see Theorem 2.1) that
$$F \circ \gamma = \rho(\gamma) \circ F$$
for each $\gamma \in \Gamma_Y$ where $\rho : \pi_1(X) \to \text{PSL}_2(\mathbb{C})$ has an image Γ_Y, a Kleinian group.

Note that $F|_{\mathbb{H}_-}$ is conformal as $\hat{\mu}|_{\mathbb{H}_-} \equiv 0$, and is moreover univalent as it is the restriction of a homeomorphism.

Recall that the Schwarzian derivative of a univalent function $f : \mathbb{H} \to \mathbb{C}$ is a meromorphic quadratic differential
$$S(f)(z) = \left(\frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2\right) dz^2$$
that measures the deviation of f from being Möbius. In particular, $S(f)$ vanishes identically if and only if $f \in \text{Aut}(\mathcal{H})$.

By the equivariance (3), and the property that

$$S(A \circ f) = S(f) \text{ for any } A \in \text{Aut}(\mathcal{H})$$

the Schwarzian derivative of $F|_{\mathbb{H}}$ thus defines a Γ-invariant quadratic differential that descends to a meromorphic quadratic differential ϕ_Y on the Riemann surface \mathcal{X}. The Schwarzian derivative has poles of order at most two of the form

$$S(f)(z) = \left(\frac{1}{2z^2} + \frac{a}{z} + \cdots \right) dz^2$$

where $a \in \mathbb{C}$.

By Riemann-Roch, we know that the space of such quadratic differentials $\hat{Q}(X) \cong \mathbb{C}^{3g-3+n} \subset Q(X)$, and the assignment

$$\mathcal{B}_X(Y) = \phi_Y$$

defines the map in (2).

The fact that this is well-defined relies on the observation that if g and h are homotopic quasiconformal maps, then the corresponding maps $F_1|_{\mathbb{H}}$ and $F_2|_{\mathbb{H}}$ determine the same maps on \mathbb{R} that is the common boundary of both half-planes \mathbb{H}_- and \mathbb{H}_+. The conformal maps $F_1|_{\mathbb{H}}$ and $F_2|_{\mathbb{H}}$ consequently determine the same Schwarzian derivatives.

A similar argument proves that \mathcal{B}_X is an embedding: if Schwarzian derivatives ϕ_{Y_1} and ϕ_{Y_2} agree on \mathbb{H}_-, then $F_1|_{\mathbb{H}}$ and $F_2|_{\mathbb{H}}$ must differ by an automorphism of \mathbb{H}_- that fixes $\{0, 1, \infty\}$ on the boundary \mathbb{R}; consequently $F_1|_{\mathbb{R}} = F_2|_{\mathbb{R}}$ and considering the restrictions $F_1|_{\mathbb{H}}$ and $F_2|_{\mathbb{H}}$, we see that the surfaces Y_1 and Y_2 are equivalent in $\mathcal{T}_{g,n}$.

The Bers embedding we just described has the following two key properties, that we shall now briefly discuss:

\mathcal{B}_X is bounded: We equip the vector space $Q(\mathbb{H})$ of holomorphic quadratic differentials on \mathbb{H} with the norm

$$\|q(z)dz^2\| = \sup_{z \in \mathbb{H}} 4\Im(z)^2 |q(z)|.$$

The invariance of the 1-form $\frac{dz}{\Im(z)^2}$ under the Möbius group implies that the norm is invariant under the Fuchsian group Γ and determines a norm on $Q(X)$ which is finite on $\hat{Q}(X)$. With respect to this norm, we have:

Theorem 3.1 (Z. Nehari). The image of \mathcal{B}_X is contained in the ball $B(0,3/2) \subset \hat{Q}(X)$.
The proof of this is a short computation involving (5) and an application of the classical Area theorem; the reader is referred to [Hub06] or [Ahl06] for details.

\(B_X\) is open: For a quadratic differential \(q(z)dz^2 \in Q(\mathbb{H})\) define the Beltrami coefficient \(\mu_q\) on \(\mathbb{C}\) by

\[
\mu_q(z) = 2y^2q(\bar{z})
\]
on \(\mathbb{H}_+\) and identically zero on \(\mathbb{H}_-\).

Let \(f^{\mu_q}\) be the solution of the Beltrami equation as in Theorem 2.1. We then have:

Theorem 3.2 (L. V. Ahlfors-G. Weill [AW62]). If \(\|q\| < 1/2\), the Schwarzian derivative of the restriction of \(f^{\mu_q}\) to the upper half-plane is \(q\).

The idea is to consider the two linearly independent solutions \(\eta_1, \eta_2\) of the Schwarzian equation:

\[
\eta'' + \frac{1}{2}q\eta = 0
\]
on the lower half-plane, whose ratio \(f = \eta_1/\eta_2\) has Schwarzian derivative \(q\).

It can be checked that \(f\) is injective, and the map

\[
F(z) = \frac{\eta_1(z) + (\bar{z} - z)\eta'_1(z)}{\eta_2(z) + (\bar{z} - z)\eta'_2(z)}
\]
defines an extension to the upper half-plane which is quasiconformal (this uses the bound on the norm of \(q\) having Beltrami coefficient (6)). See Chapter VI.C of [Ahl06] for details.

An equivariant version of this then defines an inverse of the Bers embedding \(B_X\) in an open ball \(B(0, 1/2) \subset \hat{Q}(X)\). This construction works for (smaller) neighborhoods of an arbitrary point in the image, showing that the image of the embedding is open.

3.2. Structure of the Bers boundary:

In what follows a Bers domain shall be the image of any Bers embedding \(B_X\); the geometry of this domain in complex space can be studied by analyzing the construction sketched in the previous section.

First, the images of the upper and lower half-planes \(\mathbb{H}_\pm\) by the quasiconformal map \(F\) in (5) are quasidisks. The image group \(\Gamma_Y < \text{PSL}_2(\mathbb{C})\) of the representation \(\rho\) leaves these invariant, and the quotient of each yields the Riemann surfaces \(\bar{X}\) and \(Y\) respectively. Such a representation is called quasi-Fuchsian and thus Bers proved what is known as the Simultaneous Uniformization Theorem:

Theorem 3.3 (L. Bers, [Ber60]). The space of quasi-Fuchsian representations \(Q\mathcal{F}(\pi_1(X))\) is homeomorphic to \(\mathcal{T}_{g,n} \times \mathcal{T}_{g,n}\).
The Bers embedding B_X as in (2) is thus a slice of the subset $QF(\pi_1(X))$ of the $\text{PSL}_2(\mathbb{C})$ representation variety (when the conformal structure on one of the factors is kept fixed at X).

The image of a quasi-Fuchsian representation $\Gamma_Y \in QF(\pi_1(X))$ is a Kleinian group, a discrete subgroup of $\text{PSL}_2(\mathbb{C})$ that acts freely and properly-discontinuously on \mathbb{H}^3 with quotient a hyperbolic 3-manifold M. Topologically, M is the interior of the product $S \times I$ of a surface and an interval, where S is the underlying topological surface of X, and the boundary components $S \times \{0, 1\}$ acquire a conformal structure from the action of Γ at the sphere at infinity $\partial \mathbb{H}^3$.

It is well-known that discrete faithful representations form a closed subset, denoted by $AH(S)$, of the $\text{PSL}_2(\mathbb{C})$ representation variety; in particular, the representations that arise in the boundary of a Bers slice correspond to hyperbolic 3-manifolds with cusps, when the conformal structure on either boundary degenerates by pinching a curve, or degenerate “ends”, when the conformal structure degenerates by pinching an “ending lamination” (see [Min99] for a survey).

Thus points in the Bers boundary can be studied using tools from hyperbolic geometry; see §3.2 for some results for the case when S is a punctured torus. As an example, Sullivan’s theorem on rigidity of the “totally degenerate” hyperbolic 3-manifolds yield the fact that such boundary points are peak convex, that is,

Theorem 3.4 (Theorem 2 in [Shi85]). Let $f : \Delta \to \partial B_X$ be a holomorphic map such that $f(0)$ is a totally degenerate boundary point. Then f is constant.

In contrast, at any non-maximal cusp, the remaining moduli of the conformal boundary parametrize an open set in ∂B_X.

The simplest Teichmüller spaces are that of the punctured torus or the four-punctured sphere, as it is one complex dimensional. By a large margin, the literature on Bers embedding focuses on the punctured torus case. See [KSWY06], [KS04b] for visualizations, computational aspects, which rely on solving the Schwarzian equation numerically and then checking for discreteness of the resulting holonomy.

We highlight here some results for the case when X is a punctured torus:

- The Bers domain B_X is a Jordan domain; this is consequence of the deep work of Y. Minsky in [Min99] that proves the Ending Lamination Conjecture for punctured-torus groups. The boundary circle can be identified with projective classes of rational and irrational measured laminations on the punctured torus.
- H. Miyachi proved a folklore conjecture in [Miy03] showing that the rational points on the Bers boundary of B_X are $2/3$ cusps; in particular, though a Jordan domain, it is not a quasi-disk.
- Boundary points exhibit spiralling behavior, which is described in work of D. Goodman in [Goo06].
The last two papers crucially use Minsky’s Pivot Theorem in [Min99] and study the behaviour of rational pleating rays introduced by L.Keen and C.Series in [KS04a].

The following question is still open, however:

Question 3.5 (D. Canary in [Can10]). What is the Hausdorff dimension of the boundary of B_X?

For Bers domains of higher dimensions, very little is known. In particular, it is not known if the closure is homeomorphic to a closed ball. In fact, the following is still open:

Conjecture 1 (K. Bromberg in [Bro11]). The closure of a Bers domains of dimension greater than one in $\mathcal{QF}(S)$ is not locally connected.

One can also raise the following:

Question 3.6. What does the tiling of the Bers domain by fundamental domains for the mapping class group action look like? In particular, for a fixed fundamental domain F, does the Euclidean diameter of $\gamma_i \cdot F$ tend to zero for a diverging sequence $\gamma_i \to \infty$ (for $i \to \infty$) of mapping classes in $\mathrm{MCG}(S)$?

4. **Invariant metrics on Teichmüller domains**

4.1. **The Kobayashi and Carathéodory metrics.** The Bers domain is often studied in terms of metrics invariant under the automorphism group of the domain. We will focus on the Kobayashi and Carathéodory metrics, which are complete Finsler metrics intimately related to issues of Euclidean convexity of the domain.

On any bounded domain Ω in \mathbb{C}^N, the *infinitesimal Kobayashi metric* is defined by the following norm for a tangent vector v at a point $X \in \Omega$:

$$K_\Omega(X, v) = \inf \frac{|v|}{h'(0)}$$

where over all holomorphic maps $h : \Delta \to \Omega$ such that $h(0) = X$ and $h'(0)$ is a multiple of v.

The *Kobayashi metric* d^K_Ω on Ω is then the distance defined in the usual way: one first defines lengths of piecewise C^1 curves in Ω using the above norm and then takes the infimum of lengths of curves joining two given points to get the distance between them.

The *Carathéodory metric* d^C_Ω on Ω is defined by

$$d^C_\Omega(p, q) = \sup \{ d_\Omega(f(p), f(q)) \},$$

where d_Ω denotes the Poincaré metric on Δ and the supremum is over all holomorphic maps from Ω to Δ.
The following is immediate from the definitions: For any \(p, q \in \Omega \) we have
\[
(9) \quad d_{C}^{\Omega}(p, q) \leq d_{K}^{\Omega}(p, q).
\]
and we have the contracting property
\[
(10) \quad d_{K}^{\Omega_{1}}(f(p), f(q)) \leq d_{K}^{\Omega_{2}}(p, q) \quad \text{and} \quad d_{C}^{\Omega_{1}}(f(p), f(q)) \leq d_{C}^{\Omega_{2}}(p, q)
\]
for any holomorphic map \(f : \Omega_{1} \to \Omega_{2} \) between the domains.

Remark. The Kobayashi and the Carathéodory metrics are equal on the unit ball \(\mathbb{B}^{n} \subset \mathbb{C}^{n} \). Moreover, they are equal to the norm of the complex hyperbolic metric on \(\mathbb{B}^{n} \). In particular, \(d_{\Delta}^{K} \) is the Poincaré (hyperbolic) metric on the ball.

4.2. Complex Geodesics

Let \(\Omega \subset \mathbb{C}^{n} \) be a bounded domain. A **complex geodesic** in \(\Omega \) is a holomorphic and isometric embedding \(\tau : (\mathbb{H}, d_{H}^{K}) \to (\Omega, d_{\Omega}^{K}) \). As noted above, the Kobayashi \(d_{H}^{K} \) on \(\mathbb{H} \) is the distance function of the hyperbolic metric, and is isometric to the Poincaré disk \((\mathbb{D}, d_{\mathbb{D}}) \).

It is a remarkable fact, due to L Lempert [Lem81] and generalized by H. Royden-P. M. Wong [RW], that complex geodesics exist in abundance when \(\Omega \) in a bounded convex domain:

Theorem 4.1 (L. Lempert[Lem81], H. Royden-P. M. Wong[RW]). Let \(\Omega \subset \mathbb{C}^{n} \) be a bounded convex domain.

(i) For any \(p, q \in \Omega \) there exists a complex geodesic \(\tau : \mathbb{H} \to \Omega \) with \(\tau(0) = p \) and \(\tau(z) = q \) for some \(z \in \mathbb{H} \).

(ii) For any \(p \in \Omega \) and \(v \in \mathbb{C}^{n} \) there exists a complex geodesic \(\tau : \mathbb{H} \to \Omega \) with \(\tau(0) = p \) and \(\tau'(0) = tv \) for some \(t > 0 \).

This was proved for domains with \(C^{2} \)-smooth strongly convex domains by Lempert and generalized to arbitrary convex domains by Royden and Wong.

Apart from convex domains there are very few domains for which the existence of complex geodesics with prescribed data is known. Interestingly, this is known to be true for Teichmüller domains:

Theorem 4.2 (C. J. Earle-I. Kra-S. L. Krushkal [EKK94]). Let \(\Omega \subset \mathbb{C}^{n} \) be a Teichmüller domain. Then the conclusions of Theorem 4.1 hold.

We will describe complex geodesics in Teichmüller space in more detail in the next subsection.

Returning to convex domains, more is known about complex geodesics, apart from their existence. In fact, Lempert-Royden-Wong proved the following:

Theorem 4.3 (L. Lempert[Lem81], H. Royden-P. M. Wong[RW]). Let \(\Omega \subset \mathbb{C}^{n} \) be a bounded convex domain. For every complex geodesic \(\tau : \mathbb{H} \to \Omega \) there is a holomorphic retract \(\Phi : \Omega \to \Omega \) for \(\tau \), i.e., there is a holomorphic map \(\Phi : \Omega \to \Omega \) such that \(\Phi(\Omega) \subset \tau(\mathbb{H}) \) and \(\Phi(z) = z \) for all \(z \in \tau(\mathbb{H}) \).
By composing Φ with τ^{-1} we get a map, which we continue to denote by Φ, from Ω to \mathbb{H}. It is not difficult to see that Φ is an extremal map for the Carathéodory metric and, in fact, we have

Corollary 4.4. If $\Omega \subset \mathbb{C}^n$ is a bounded convex domain, then $d^K_{\Omega} = d^C_{\Omega}$.

Theorems 4.1 and 4.2 prompt a natural question: can a Teichmüller domain be bounded and convex? On the other hand, an analogue of Theorem 4.3 and Corollary 4.4 was not known to hold for Teichmüller space. In fact, V. Markovic proved very recently that Corollary 4.4 fails for Teichmüller space, thereby answering the question in the negative. We will discuss his work and related issues in later sections.

4.3. The Teichmüller metric. It turns out that the Kobayashi metric on $\mathcal{T}_{g,n}$ can be described in terms of extremal quasiconformal maps. In fact, the following definition of the Teichmüller metric predates that of the Kobayashi metric.

The *Teichmüller distance* between two marked surfaces X and Y is defined by

\[(11) \quad d_T(X,Y) = \frac{1}{2} \inf_f \ln K(f)\]

where the infimum is taken over quasiconformal homeomorphisms preserving the marking and fixing the punctures, and

\[K(f) = \frac{1 + \|\mu\|_{\infty}}{1 - \|\mu\|_{\infty}}\]

where μ, as in (1), is the quasiconformal dilatation of f.

The infimum is, in fact, attained by a *Teichmüller map* $\Psi : X \to Y$. It turns out that such a map is an affine stretch in local Euclidean charts on X associated to a holomorphic quadratic differential q on X. Indeed, if the quadratic differential q can be expressed as $d\xi^2$ in a local chart given by the complex coordinate $\xi = x + iy$, then a Teichmüller map can be written as

\[\Psi(\xi) = K^{1/2}x + iK^{-1/2}y,\]

where K is the minimum dilation in (11).

A remarkable feature of the Teichmüller metric is that it admits a geometric description of geodesic paths: namely, the one real-parameter worth of such affine stretches

\[(12) \quad \Psi_t(\xi) = e^tx + ie^{-t}y\]

yields a family of surfaces Y_t that lie along a (parametrized) Teichmüller geodesic ray. These, in fact, extend to complex geodesics, as defined earlier, by allowing a complex parameter $\tau = t + i\theta \in \mathbb{H}$, in which case

\[(13) \quad \Psi_{\tau}(\xi) = e^t \cos \theta x + ie^{-t} \sin \theta y\]
in each coordinate chart. The locus of Riemann surfaces obtained by varying $\tau \in \mathbb{H}$ is then a totally geodesic disc in Teichmüller space called a Teichmüller disc. The induced metric on the disc is then the Poincaré (hyperbolic) metric on \mathbb{H}.

Alternatively, a holomorphic quadratic differential $q \in \mathcal{Q}(X)$ gives rise to a holomorphic embedding $\mathcal{D}(q) : \mathbb{H} \to \mathcal{BD}(X)$ defined by

$$\mathcal{D}(q)(\tau) = \frac{1 - \tau |q|}{1 + \tau |q|}.$$

On the other hand, as in §2, we have the natural holomorphic map $\pi : \mathcal{BD}(X) \to \mathcal{T}_{g,n}$ which associates to μ the quasiconformal map $[\mu]$ with complex dilatation μ. It can be checked that the composition $\pi \circ \mathcal{D}(q) : \mathbb{H} \to \mathcal{T}_{g,n}$ coincides with the Teichmüller disk above. Moreover, such a disk is a complex geodesic as defined in the previous section (§4.2).

See for example, §9.5 of [Leh87], for more on their construction and properties. As a side note, we point out a recent result of S. Antonakoudis [Ant17a] that any such isometric embedding of (\mathbb{D}, d_ρ) in $(\mathcal{T}_{g,n}(X), d_\tau)$ is necessarily holomorphic or anti-holomorphic.

By the work of Royden, we have

Theorem 4.5 (H. L. Royden [Roy71]). The Kobayashi and Teichmüller metrics coincide.

Remark. The above construction in fact gives a Teichmüller disk \mathcal{D} through any point and any (complex) direction; using the fact that it is an isometric embedding, the contracting property of the Kobayashi metric (see (10)) implies that $d^K \leq d_\tau$; the main work is to prove the reverse inequality, see Chapter 7 of [GL00] for a proof using the Slodkowski extension theorem.

In what follows let S be a closed orientable surface of genus $g \geq 2$; the discussion extends to the case of a hyperbolic surface with punctures which we elide. The mapping class group $\text{MCG}(S)$ is the group of self-homeomorphisms of S up to homotopy. It is immediate from the definitions that each element of $\text{MCG}(S)$ is a holomorphic isometry of $(\mathcal{T}_{g,n}(X), d_\tau)$. It is a fact, due to Royden again, that these are the only isometries:

Theorem 4.6 (H. L. Royden [Roy71]). $\text{Isom}(\mathcal{T}_{g,n}) = \text{MCG}(S)$.

Since biholomorphic mappings are isometries for the Kobayashi metric, this implies

Corollary 4.7. $\text{Aut}(\mathcal{T}_g) = \text{MCG}(S)$.

Note that by (13), Teichmüller disks arise as orbits of the linear group $\text{SL}_2(\mathbb{R})$ which act linearly on the local $\xi = x + iy$ coordinates. A full account of the dynamics of this action is beyond the scope of this article (see [Wri15] for a
readable survey), however we mention the following fundamental ergodicity result which we will use later in the paper. We note first that the identification of the cotangent space $T^*_X \mathcal{T}_g$ with the vector space $\mathcal{Q}(X)$ of holomorphic quadratic differentials on X, combined with (12) gives rise to the Teichmüller geodesic flow Ψ_t on the unit cotangent bundle $T^*_1 \mathcal{T}_g$.

Theorem 4.8 (H. Masur [Mas82], W. A. Veech [Vee82]). There is a \text{MCG}(S)-invariant measure on the unit cotangent bundle $T^*_1 \mathcal{T}_g$ such that

(i) the Teichmüller geodesic flow ϕ_t on $T^*_1 \mathcal{T}_g$ is ergodic, and

(ii) the induced measure on \mathcal{T}_g is equivalent to the top-dimensional Hausdorff measure of $d\tau$.

We end this section by remarking that there are other invariant metrics on Teichmüller which are important in other settings and have been extensively studied, notably the Weil-Petersson metric, which is an incomplete Kähler metric on $\mathcal{T}_{g,n}$ (for a survey see [Wol09]). For comparisons between various metrics, see [Yeu05] or the series of papers of K. Liu-X. Sun-S.-T. Yau (for example [LSY09]).

5. Comparison with products and bounded symmetric domains

It is known that Teichmüller space endowed with the Teichmüller metric d_T is not negatively curved, even in a “coarse” sense. More precisely, it is not Gromov hyperbolic (see [MW95]). On the other hand, quite remarkably $\mathcal{T}_{g,n}$ exhibits some features of complex structures of strictly negatively curved Kähler manifolds. In particular, one has the following “rigidity” result :

Theorem 5.1 (Corollary 1 of [Tan93]). Let $f : \mathbb{D} \times \mathbb{D} \rightarrow \mathcal{T}_{g,n}$ be a holomorphic map such that $f|_{\mathbb{D} \times \{w\}} : \mathbb{D} \rightarrow \mathcal{T}_{g,n}$ is proper for some $w \in \mathbb{D}$. Then $f(z, w_1) = f(z, w_2)$ for all $z, w_1, w_2 \in \mathbb{D}$.

An immediate corollary is

Corollary 5.2 ([Tan93], [Miy15]). $\mathcal{T}_{g,n}$ is not a product of complex manifolds.

The proof of Theorem 5.1 uses the interpretation of the Bers domain as a subset of quasi-Fuchsian characters; here we provide a sketch of the proof:

Recall from §3 that the “totally degenerate” points on the Bers boundary are of full measure; this remains true for the boundary limits of any holomorphic disk as in (11) with respect to the Lebesgue measure on the boundary circle (such limits exist in almost every radial direction by Fatou’s theorem). However, as a consequence of Sullivan rigidity, totally degenerate boundary points do not admit holomorphic deformations (cf. Theorem 3.4). The proof of the rigidity result can then be derived from the abundance of such rigid boundary points, and an application of F and M. Riesz’s theorem that says that if a holomorphic map on the disk extends to a map that is constant almost everywhere on the boundary, then it is constant.
When \(g = 1 \), the Teichmüller space \(\mathcal{T}_1 \) is biholomorphic to the upper half-plane \(\mathbb{H}^2 \), so its geometry is that of this symmetric space. Indeed, the factor \(\frac{1}{2} \) in the definition of the Teichmüller metric in (11) is to ensure that it coincides with the hyperbolic metric.

When \(g \geq 2 \), the discreteness of the automorphism group (Corollary 4.7) immediately implies that \(\mathcal{T}_g \) is never biholomorphic to a bounded symmetric domain. Even stronger still, are the results of B. Farb-S. Weinberger who established the infinitesimal asymmetry of \(\mathcal{T}_g \) for \(g \geq 3 \) (see [FW10]) and S. Antonakoudis who proved in [Ant17b] that except for the torus case, there are no holomorphic isometric embeddings of Teichmüller space into a bounded symmetric domain (or vice versa).

However, the analogy with symmetric spaces continues to shed light on the geometry of Teichmüller space and its compactifications (see, for example, [Ji09] for an account of the latter).

6. Convexity and pseudoconvexity

Pseudoconvexity of Teichmüller domains: The notion of “pseudoconvexity” of a domain (or more generally, a complex manifold) is fundamental in complex geometry, as it is closely related to the notion of a “domain of holomorphy” or a “Stein manifold” (see, for example, the insightful survey of Siu in [Siu78]). We provide a brief discussion here.

A domain \(\Omega \subset \mathbb{C}^n \) is said to be strictly (or strongly) pseudoconvex if there is a \(\mathcal{C}^2 \)-smooth function \(\phi : \mathbb{C}^n \to \mathbb{R} \) such that

1. \(\Omega = \{ z \in \mathbb{C}^n : \phi(z) < 0 \} \)
2. \(\phi^{-1}(0) = \partial\Omega \) and \(\nabla \phi \neq 0 \) on \(\partial\Omega \)
3. the following convexity property is satisfied at any \(p \in \partial\Omega \): the Hermitian quadratic form (the **Levi form**) defined by

\[
\mathcal{L}_\phi(p; v) = \sum_{i,j=1}^{n} \frac{\partial^2 \phi}{\partial z_i \partial \bar{z}_j}(p) v_i \bar{v}_j
\]

is positive for all \(v \in \mathbb{C}^n \setminus \{0\} \) such that \(v_N := \langle \nabla_{\bar{z}} \phi(p), v \rangle = 0 \). (Here \(\nabla_{\bar{z}} \phi(p) = (\frac{\partial \phi}{\partial \bar{z}_1}, ..., \frac{\partial \phi}{\partial \bar{z}_n}) \).)

Note that the condition \(v_N = 0 \) is equivalent to the requirement that \(v \) lies in the maximal complex subspace of \(T_p(\partial\Omega) \).

It can be shown that the above condition can be restated as follows: \(D \) is strictly pseudoconvex at \(p \in \partial D \) if there exists a neighborhood \(U \) of \(p \) in \(\mathbb{C}^n \) such that \(\partial D \cap U \) is \(\mathcal{C}^2 \)-smooth and a biholomorphism \(\Phi : U \to \Phi(U) \subset \mathbb{C}^n \) such that \(\Phi(U \cap \overline{D}) \) is strictly convex at \(p \), that is, there is a local defining function for the boundary defined near \(p \), that has a positive-definite Hessian.
More generally, a bounded domain $D \subset \mathbb{C}^n$ is \textit{pseudoconvex} if it can be written as a union $D = \bigcup_{i=1}^{\infty} D_i$ where each D_i is strictly pseudoconvex and $\overline{D_i} \subset D_{i+1}$.

Note that we do not require ∂D to be C^2-smooth to define pseudoconvexity. It is clear that pseudoconvexity is invariant under biholomorphisms between domains. Examples of pseudoconvex domains include convex domains: this can be seen, for instance, by constructing a C^∞-smooth \textit{strongly convex} exhaustion function on such a domain (see Theorem 2.40 of \cite{Kra15}).

The pseudoconvexity of Bers domains was established by L.Bers and L. Ehrenpreis in \cite{BE64}. In \cite{Wol87}, S. Wolpert in fact proved that the geodesic length function of a “filling” system of curves (\textit{i.e.} one whose complement is a disc) is a smooth proper, strictly plurisubharmonic exhaustion function on $\mathcal{T}_{g,n}$. (Note that \textit{plurisubharmonic} means that the function has a positive definite Levi form as in condition (3) at every point.)

Another such exhaustion was provided by A.J. Tromba in \cite{Tro96} when he showed that the Dirichlet energy of harmonic diffeomorphism $h : Y \to X$ between hyperbolic surfaces, as Y varies in $\mathcal{T}_{g,n}$, is strictly plurisubharmonic.

In \cite{Yeu03} S.-K. Yeung constructed \textit{bounded} smooth strictly plurisubharmonic exhaustion functions. In \cite{Miy} H. Miyachi constructs other plurisubharmonic exhaustions by considering extremal lengths of filling pairs of measured foliations.

\textbf{Convexity of Teichmüller domains.} Unlike pseudoconvexity, Euclidean convexity of domains is not natural in the setting of complex geometry, as it is not preserved under biholomorphisms. Nevertheless, there are several important results about the complex geometry of such domains. In particular, one has the striking results of Lempert, which we touched upon in §4.2.

A basic question regarding the geometry of Teichmüller domains is the following folklore conjecture, recently proved by V. Markovic:

\textbf{Conjecture 2.} The Teichmüller space of a closed surface of genus $g \geq 2$ is not biholomorphic to a bounded convex domain $\Omega \subset \mathbb{C}^{3g-3}$.

As described in S-T. Siu’s survey \cite{Sin91}, Conjecture 2 fits in the context of the following theorem of S. Frankel:

\textbf{Theorem 6.1 (S. Frankel \cite{Fra89}).} Let $\Omega \subset \mathbb{C}^n$ a bounded convex domain. If there is a discrete subgroup $\Gamma \subset \text{Aut}(\Omega)$ acting freely on Ω such that Ω/Γ is compact then Ω is biholomorphic to a bounded symmetric domain.

As for \mathcal{T}_g, it is known that there is a discrete subgroup $\Gamma \subset \text{Aut}(\mathcal{T}_g)$ acting freely on \mathcal{T}_g such that the quotient \mathcal{T}_g/Γ has finite Kobayashi volume. However \mathcal{T}_g/Γ is noncompact and a generalization of Frankel’s result to the case of convex domains with finite-volume quotients is not known.
By Corollary 4.4, the existence of a convex embedding of \mathcal{T}_g would imply that the Kobayashi and Carathéodory metrics coincide, that is, we have $d^K_{\mathcal{T}} = d^C_{\mathcal{T}}$. In fact, it was proved by I. Kra [Kra81] that these two metric agree on Teichmüller discs associated to Abelian holomorphic quadratic differentials. The recent result of Markovic alluded to above is the stronger fact that

Theorem 6.2 (V. Markovic [Mar]). If $g \geq 2$, we have $d^K_{\mathcal{T}} \neq d^C_{\mathcal{T}}$ on \mathcal{T}_g.

In particular, \mathcal{T}_g cannot be biholomorphic to a bounded convex domain, answering Conjecture 2.

Around the same time, the authors of the current article proved the following local property of the on boundary of a Teichmüller domain.

Here, we say that a domain $\Omega \subset \mathbb{C}^n$ is locally convex at $p \in \partial \Omega$ if $\Omega \cap B(p, r)$ is convex for some $r > 0$, where $B(p, r)$ denotes the Euclidean ball with center p and radius r. Moreover, it is locally strictly convex if $\Omega \cap B(p, r)$ is strictly convex.

Theorem 6.3 (S. Gupta, H. Seshadri [GS]). For $g \geq 2$, any Teichmüller domain for \mathcal{T}_g cannot have any locally strictly convex point on its boundary.

We shall outline proofs of the above results in the next two sections of this article.

One motivation for Theorem 6.3 is the technique of localization in complex analysis, that we shall elaborate on later in §8. A version of that was used by Frankel in his proof of Theorem 6.1, and he observes in the paper that one can replace the assumption of global convexity of the domain with a suitable local convexity at certain orbit accumulation points.

7. **Kobayashi \neq Carathéodory on Teichmüller domains**

This section provides an extended discussion of some of the ideas involved in Markovic’s proof of Theorem 6.2 proving that the Carathéodory and Kobayashi metrics are not equal on Teichmüller domains.

His first observation is that $\mathcal{T}_{0,5}$, the Teichmüller space of the five-punctured sphere admits a holomorphic embedding into \mathcal{T}_g for any $g \geq 2$ that is also an isometric embedding with respect to the Teichmüller metrics.

Hence by the distance-decreasing properties of the two metrics and the domination of the Carathéodory metric by the Kobayashi metric (see (10) and (9) in §4), it suffices to prove that $d^K_{\mathcal{T}_{0,5}} \neq d^C_{\mathcal{T}_{0,5}}$.

This involves several steps, and crucially relies on the following observation regarding the restrictions of these metrics to Teichmüller discs:

Recall the notion of a Teichmüller disc \mathcal{D}_q associated to a holomorphic quadratic differential $q \in \mathcal{Q}(X)$ (see (13)).
We say that the Teichmüller disc D_q is extremal for a holomorphic function $\Phi : T_{g,n} \to \mathbb{H}$ if $\Phi \circ D_q \in \text{Aut}(\mathbb{H})$.

Then the properties (9) and (10) of the Kobayashi and Carathéodory metrics imply that they agree on a Teichmüller disc D_q if and only if D_q is extremal for some holomorphic map $\Phi : T_{g,n} \to \mathbb{H}$.

Step 1 : A criterion for $d^C_T = d^C_T$ on certain Teichmüller discs in $T_{0,5}$.

We say that $q \in Q(X)$ is a Jenkins-Strebel differential (J-S differential, in short) if q induces a decomposition of X into a finite number of annuli Π_j, $j = 1, ..., k$, foliated by closed horizontal trajectories of q. (Recall that a horizontal trajectory is an integral curve of directions v where the quadratic form $q(v, v) > 0$.) Let m_j denote the conformal modulus of Π_j. If the m_j have rational ratios then q is said to be a rational J-S differential.

Assume that q is rational. Let $\gamma_1, ..., \gamma_k$ be a collection of disjoint simple closed curves on X, with γ_j homotopic to Π_j. Markovic observes that the Teichmüller disc D_q determined by q is stabilized by the infinite cyclic subgroup of $\text{MCG}(S)$ generated by a product T of certain powers of Dehn twists about γ_j.

An averaging procedure then yields the following statement: if D_q is extremal for some holomorphic function $\hat{\Phi} : T_{g,n} \to \mathbb{H}$, then there is a holomorphic function $\Phi : T_{g,n} \to \mathbb{H}$ such that

(i) $(\Phi \circ D_q)(\lambda) = \lambda$ for all $\lambda \in \mathbb{H}$,

(ii) $(\Phi \circ T)(Y) = \Phi(Y) + t$ for every $Y \in T_{g,n}$ for some $t > 0$.

The next construction is a holomorphic map from a poly-plane \mathbb{H}^k to $T_{g,n}$ associated to Teichmüller disks arising from rational J-S differentials.

Fix a marked Riemann surface $S \in T_{g,n}$ and let ϕ be a rational J-S differential on S. Let $h_1, ..., h_k$ denote the heights, with respect to the singular flat metric $|\phi|$, of the corresponding annuli $\Pi_1, ..., \Pi_j$. We assume that each $h_j > 0$.

Let \mathbb{H}^k denote the k-fold Cartesian product of \mathbb{H} and define $F : \mathbb{H}^k \to BD_1(S)$ by

$$F(\lambda) = \left(i - \frac{\lambda_j}{i + \lambda_j} \right) \frac{|\phi|}{\phi}$$

on each Π_j, where $\lambda = (\lambda_1, ..., \lambda_k)$ and $i = \sqrt{-1}$.

This gives rise to the poly-plane map

$$E : \mathbb{H}^k \to T_{g,n}$$

defined by $E(\lambda) = [F(\lambda)]$.

Note that E is holomorphic and its restriction to the diagonal is the Teichmüller disc D_q. It turns out that the quasiconformal map with dilatation $F(\lambda)$ is an affine map in suitable holomorphic charts (cf. (12)) and one can use this to prove the
following crucial property of E:
\[
E(\lambda + (t, ..., t)) = (T \circ E)(\lambda),
\]
where $t > 0$ and $T \in \text{MCG}(S)$ is as above.

If we let $f = \Phi \circ E$, then the holomorphic map $f : \mathbb{H}^k \to \mathbb{H}$ satisfies certain properties, arising from the defining properties of Φ and the equation above. Moreover, it turns out that one can classify all holomorphic maps from \mathbb{H}^k to \mathbb{H} satisfying these properties. Indeed, for $k = 2$ (this suffices for the main result), one concludes that there exist $\alpha_1, \alpha_2 > 0$ such that
\[
f(\lambda_1, \lambda_2) = \alpha_1 \lambda_1 + \alpha_2 \lambda_2
\]
for all $(\lambda_1, \lambda_2) \in \mathbb{H}^2$.

To summarize, one has the following criterion for the equality of the Kobayashi and Carathéodory metrics:

Theorem 7.1. Let X be biholomorphic to a Riemann sphere with five punctures. Let q be a rational J-S differential on X that decomposes the surface into exactly two annuli swept out by the closed horizontal trajectories of q. Then $d^K_{T_0, 5}$ and $d^C_{T_0, 5}$ agree on the Teichmüller disc D_q if and only if the function $\Phi : E(\mathbb{H}^2) \to \mathbb{H}$ given by
\[
\Phi(E(\lambda_1, \lambda_2)) = \alpha_1 \lambda_1 + \alpha_2 \lambda_2,
\]
for all $(\lambda_1, \lambda_2) \in \mathbb{H}^2$ can be extended to a holomorphic function $\Phi : T_{0, 5} \to \mathbb{H}$.

Step 2: Special Teichmüller disks in $T_{0, 5}$.

The goal here is to construct certain Teichmüller disks in $T_{0, 5}$ for which the criterion in Theorem 7.1 fails, to conclude that $d^K_{T_{0, 5}} \neq d^C_{T_{0, 5}}$ on these disks. These special examples arise from *L-shaped pillowcases*: let $a > 0, b \geq 0$ and $0 < q < 1$ and let $L(a, b, q)$ denote the L-shaped polygon in Figure 1. Let $S = S(a, b, q)$ denote the double of L, as a Riemann surface. The form dz^2 descends to a J-S differential $\psi = \psi(a, b, q)$ on S and S decomposes into two non-degenerate annuli Π_1 and Π_2 swept out by the closed horizontal trajectories of ψ.

Fix $(a_0, b_0, q_0) \in \mathbb{Q}^3$. The J-S differential $\psi_0 = \psi_0(a_0, b_0, q_0)$ is then rational. Let $E_0 : \mathbb{H}^2 \to T_{0, 5}$ denote the poly-plane map corresponding to ψ_0 as in (14). It can be seen that
\[
E_0\left(\frac{b}{b_0}, \frac{a}{a_0}\right) = S(a, b, q_0)
\]
for all $a, b > 0$.

The above equation combined with Theorem 7.1 and a continuity argument then shows the existence of a holomorphic function $\Psi : T_{0, 5} \to \mathbb{H}$ such that
\[
\Psi(a, b, q_0) = (a + bq_0)i
\]
for all $a > 0, b \geq 0$.
Now fix \(q_0 \in (0, 1) \) and suppose that \(d^K_{\psi(a_0,b_0,q_0)} = d^C_{T_{0,5}} \) on the Teichmüller disc \(\mathcal{D}_{\psi(a_0,b_0,q_0)} \) for some \(a_0, b_0 > 0 \).

The final and perhaps the most delicate part of the argument involves the smooth \((C^\infty)\) path \(S(t) = S(a_0,0,q_0-t) \) in \(T_{0,5} \) with \(t > 0 \) sufficiently small. The contradiction arises from the following

Claim: The composition \(\Psi \circ S \) is not smooth at \(t = 0 \).

The proof of this claim is based on the following expansion:

\[
\Psi(S(a,0,q-t)) = \Psi(S(a,0,t)) + \beta_1(1+o(1))\frac{t}{\log t^{-1}} + \beta_2(1+o(1))\frac{t^2}{\log t^{-1}} + o\left(\frac{t^2}{\log t^{-1}}\right)
\]

for some \(\beta_1 \) and \(\beta_2 \neq 0 \). This is obtained by an application of 15 and some involved calculations of Schwarz-Christoffel maps for \(L \)-shaped polygons.

8. **Local convexity of Teichmüller domains**

While Markovic’s result settles the question of convexity of Teichmüller domains, it turns out that one can extract finer information about such domains. In particular, one can show that no boundary point can be locally strictly convex, which we stated as Theorem 6.3. In this section we shall outline the proof of this result.

The strategy of the proof is inspired by K.-T. Kim’s proof of the following result:

Theorem 8.1 (K.-T. Kim [Kim04]). For \(g \geq 2 \) the Bers embedding of \(\mathcal{T}_g \) is not convex.

As in Kim’s proof, our proof involves two distinct components. Let \(\Omega \subset \mathbb{C}^{3g-3} \) be a Teichmüller domain with a locally strictly convex boundary point \(p \in \partial \Omega \).
Step 1. This is the main part of [GS]. The goal is to show that any point \(p \) as above is an orbit accumulation point for \(\text{Aut}(\Omega) = \text{MCG}(S) \).

In Kim’s work, one has the corresponding result for the Bers domain: every point of the Bers boundary is an orbit accumulation point. This follows from McMullen’s result that cusps are dense in the Bers boundary ([McM91]), since powers of a Dehn twist converge to such cusps. Note that the orbit accumulation point property may not be preserved under biholomorphisms of domains as biholomorphism may not extend in an absolutely continuous manner (or indeed, even as well-defined function!) to closures of domains.

Step 2: This step consists of rescaling at a “smooth” orbit accumulation point to obtain an unbounded convex domain \(\Omega_\infty \) in the limit with the following properties: (i) \(\Omega_\infty \) is biholomorphic to \(\Omega \) and (ii) \(\text{Aut}(\Omega_\infty) \) contains a one-parameter subgroup. These lead to a contradiction: Royden’s theorem (Corollary 4.7) and (i) together imply that \(\text{Aut}(\Omega_\infty) \) is the discrete group \(\text{MCG}(S) \).

Localization. The second step requires the technique of “localization” or complex rescaling, which is a simple and powerful method in complex analysis pioneered by S. Pinchuk ([Pin91]), typically used to analyze the boundary mappings behaviour of holomorphic mappings.

We briefly discuss the notion of smoothness needed:

If \(\Omega \) is a domain in \(\mathbb{C}^N \), we say that a point \(q \in \partial \Omega \) is Alexandroff smooth if \(\partial \Omega \) is the graph, near \(q \), of a function which has a second-order Taylor expansion at \(q \). It is a theorem of Alexandroff that almost every point of \(\partial \Omega \) is smooth in this sense if \(\Omega \) is convex. In particular, if \(\Omega \) is locally convex at \(q \) then we can assume that \(q \) is Alexandroff smooth, without loss of generality.

The original rescaling argument of Pinchuk requires the \(C^2 \)-smoothness of the boundary of the domain under consideration. However, in Frankel’s setting (for his proof of Theorem 6.1) or the case of the Bers domain, the boundary is far being smooth. In his work Frankel introduced a rescaling technique along an orbit of the automorphism group accumulating at a boundary point which dispenses with the \(C^2 \)-smoothness assumption. Subsequently, K.-T. Kim and S. G. Krantz ([KK08]) developed a variant of Pinchuk’s method in the convex case which does not require a \(C^2 \)-smooth boundary and proved that, in fact, this recovers Frankel’s rescaling. In brief, they show the following: Suppose \(\Omega \) is a domain, locally convex at at an Alexandroff smooth point \(q \in \partial \Omega \). Suppose that \(p_j = \gamma_j(p) \to q \) for \(\gamma_j \in \text{Aut}(\Omega) \) and \(p \in \Omega \). Then there exist invertible complex affine transformations \(A_j : \mathbb{C}^N \to \mathbb{C}^N \) such that the biholomorphic embeddings \(A_j \circ \gamma_j : \Omega \to \mathbb{C}^N \) converge, on compact sets, to an embedding \(\psi : \Omega \to \mathbb{C}^N \). Moreover, the convex domains \(A_j \circ \gamma_j(\Omega) \) converge in the local Hausdorff sense (The local convexity at boundary point is crucial to obtain a subconvergent sequence of domains.)
limiting image $\phi(\Omega)$ is convex and contains an affine copy of \mathbb{R} in its boundary. This immediately implies $\mathbb{R} \subset \text{Aut}(\Omega)$ where the elements act by translations.

Orbit accumulation point. The proof of the orbit accumulation property in the first step is based on two basic results in Teichmüller theory:

First, the abundance of Teichmüller disks, that are complex geodesics (as defined in §4.2) in Teichmüller space. More precisely, by Theorem 4.2, one knows that through every point $p \in \Omega$ and every direction $v \in T_p \mathcal{T}_g$, there exists a Teichmüller disk $\tau: \Delta \to \mathcal{T}_g$ with $\tau(0) = p$ and $\tau'(0) = tv$ for some $t > 0$.

Second, Theorem 4.8 about the ergodicity of the Teichmüller geodesic flow due to H. Masur [Mas82] and W. Veech [Vee82]. Their work implies, in particular, that for any Teichmüller disk, almost every radial ray gives rise to a geodesic ray in \mathcal{T}_g that projects to a dense set in moduli space $\mathcal{M}_g := \mathcal{T}_g / \text{MCG}(S)$. In particular, there is a sequence of points along such rays that recur to any fixed compact set in \mathcal{M}_g.

Given these facts, the proof involves an elementary but delicate analysis of the boundary behaviour of holomorphic functions on the unit disc in \mathbb{C}. We choose a point $p' \in \Omega$ which is close to the strictly convex point $p \in \partial \Omega$ and take a complex geodesic $\tau: \Delta \to \Omega$ with $\tau(0) = p'$. Since the boundary point p is locally strictly convex, there is a pluriharmonic “barrier” function h, namely the height from a supporting hyperplane at p, whose sub-level sets nest down to the single point p. This allows us to “trap” the complex geodesic τ, by proving the existence of a positive measure set of radial directions in Δ which under the holomorphic map τ limit to boundary points arbitrarily close to p. One can then apply the Masur-Veech ergodicity result to infer the existence of an orbit points shadowing such a radial ray, which accumulate arbitrarily close to p.

This concludes our discussion of the proof of Theorem 6.3.

Further questions. In fact, minor modifications of the proof yield a more general statement: a Teichmüller domain cannot have a locally strictly convexifiable boundary point. By definition, if $p \in \partial \Omega$ is such a point, then there exists $r > 0$ and a holomorphic embedding $F: \Omega \cap B(p, r) \to \mathbb{C}^{3g-3}$ such that $F(\Omega \cap B(p, r))$ is strictly convex.

A natural question is whether one can relax the strict convexity assumption above to convexity:

Conjecture 3. The Teichmüller space of a closed surface of genus $g \geq 2$ cannot be biholomorphic to a bounded domain $\Omega \subset \mathbb{C}^{3g-3}$ that is locally convex at some boundary point.

It would be interesting to see if the analysis in Step 1 producing the orbit accumulation points can be extended to understand the statistics of the distribution
of accumulation points on the boundary; even for the Bers domain, this would be a step towards understanding the structure of the boundary better.

References

Department of Mathematics, Indian Institute of Science, Bangalore 560012, India.

E-mail address: subhojoy@math.iisc.ernet.in

E-mail address: harish@math.iisc.ernet.in