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Analysis is made of a free-electron laser with many optical cavities where the cavities communicate with each other, not opti-
cally, but through the electron beam. Analytic analysis is made in a one-dimensional, linear approximation. A general expression
is given for the growth rate in the exponential (high current) regime. In the regime where lethargy is important expressions are
given in the two opposite limits of small and large numbers of cavities and bunches. Numerical simulation results, still in the one-
dimensional approximation, but including nonlinearities, are presented. Three examples of the multi-cavity free-electron laser

(MC/FEL) are presented.

1. Introduction

At long wavelengths it is not possible to directly
employ a free-electron laser (FEL) for the purpose
of making brief, intense pulses of radiation since the
intrinsic slippage in a FEL, between light and elec-
trons, implies that the light pulse will not be as brief
as the electron pulse. One can modify the group ve-
locity when the wavelength is of the order of the light
pipe and thus make the light pulse stay with the elec-
tron pulse, and this has been shown, experimentally,
to be possible [1]. Another possibility is to “chirp”
the light pulse and then compress it, but this tech-
nique is difficult to employ with intense pulses.

Still another possibility is to employ a multi-cavity
free-electron laser (MC/FEL), and it is this possi-
bility that we want to explore in the present paper.
The idea is to simply make the FEL optical cavities
sufficiently short that the slippage length, in one op-
tical cavity, is less than the electron pulse width.
When the electrons reach the end of one cavity they
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go on to the next, but the radiation remains trapped
within that cavity.

In sect. 2 we amplify the discussion of the concept;
in sect. 3 we present the one-dimensional linear anal-
ysis; and in sect. 4 we present numerical simulation
results and three examples. The final section, sect. 5,
contains our conclusions.

2. The concept

The MC/FEL consists of a number of short op-
tical cavities, each with a length less than the slip-
page distance between the electrons and the radia-
tion. A small hole is drilled at the center of the walls
separating the cavities so that the electrons can pass
through from one cavity to the next; however, the
radiation emitted with a particular cavity remains
largely confined within that cavity. Coherent radia-
tion is extracted only from the last cavity. A sche-
matic of the proposed layout is given in fig. 1.

The electrons, which move from cavity to cavity,
are bunched and the FEL action in the next cavity
is significant, so the full length of the MC/FEL is ef-
fective; not just a single optical cavity (which is rather
short). This is similar to an optical klystron [2] or
the “‘gain cavities” in a regular klystron. In fact, in
our numerical studies we see that even when the first
few cavities have a net loss (so that the gain is not
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Fig. 1. Conceptual layout of a multi-cavity FEL.

adequate to overcome the mirror losses) the MC/
FEL still “works™.

By making the optical cavities confocal, one can
reduce the radiation moving from one cavity into the
next, i.e., improve the reflection coefficient from the
end mirrors (which must have holes for the electron
beam to go through ). One should note that radiation
moving from one cavity to the next is not a serious
matter, since the radiation will have slipped out of
the electron pulse and therefore no longer be ampli-
fied. Just as in a regular klystron, the light is only re-
moved from the last cavity and, thus, the reflection
coefficient for this last cavity is much lower than for
the other cavities.

3. Linear analysis
3.1. Generalities

In this subsection we derive the linearized equa-
tions of motion for dynamics in a MC/FEL. We start
with the full nonlinear equations of motion which,
following the notation of Bonifacio, Pellegrini, and
Narducci [3], are

dg, 1
d:

[JT)}[aexp(if;) +c.c.],

=wo(1—}'%l/)’i2)+ ZYiZ/l
(la)
dy, —eck .
@ _ —i0) +c.c. 1
it = Imch,) [JI][aexp(—if)) +cc.], (1b)
1 da K .
T =2 <exp(=i6))/3; . (lc)

Here « is the complex amplitude of the electric
field, ¢; is the phase of the jth electron relative to the
electromagnetic field, and y; is its energy in unit of
mc?. wyq is the wiggler frequency, « is the wiggler pa-
rameter, and A is the wavelength of the radiation field.
The resonant energy is yg, the electron density is n,
and X is the effective transverse cross-section of the
beam, describing the overlap of the beam with the
radiation field. The average ¢...» is carried over all
electrons in the bunch. [JJ] is the usual Bessel func-
tion factor that is unity for helical wigglers.

To proceed to a linear analysis, we drop the second
term in eq. (la) and introduce the variables

Q,=(4nrengc?) V2, (2)
1/ 1 23
—_ 2
pP= 7 (4&)0 K(Y0/7R) -Qp) s (3)

where £, is the plasma frequency and p is the FEL
parameter. We also rescale the dynamical variables
as follows:

=20 (Yr/0)%t, (4a)
w,=0,—0ot, (4b)
Li=y/(pro) (4c)
A=aexp(ifot)/ (4nmcyonop®)'/?, (4d)

where y, is the input energy.

After recasting the nonlinear equations of motion
in these scaled variables, we linearize them around
the equilibrium state Ao=0, I'=1/p,
{exp(—iny,) > =0. We perturb around this equilib-
rium state by letting A=qa, I';=(1/p)(1+n;) and
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W,=Wo;+ 0y, where d=4/p, and 4 is the usual de-
tuning parameter. Then, the linearized equations of
motion are [3, eqs. (19)-(21)],

dx/dr=y, (5)
dy/dr=-a, (6)
da/dt=—ida—ix—py, (7)

where the variables x and y are given by
x= oy, exp(—1yo) ) , (8a)
y=(1/p){nexp(—~iwo) ) . (8b)

We look for solutions with an exponential time-de-
pendence, exp (iAt), which leads to the characteristic
equation

A3—6A2+pi+1=0. (9)

Let the solutions to this equation, i.e. the eigen-
values, be 1,, A,, A5. Then the general solutions can
be written as

x(t)=x, exp(id, 1) + x5 exp(il,7) + x; exp(id5 1),
(10a)

v(t) =y, exp(id, 1)+, exp(id,7) +y3 €xp{id;7),
(10b)

a(t)=a, exp(il; 1) +a; exp(id,7) +a; exp(ids1) ,
(10c¢)

where x|, X5, X3, V1, V2, V3, dy, a5, A3 are constants.
Using the original differential equations (eqs. (5)-
(7)) six of these can be expressed in terms of the
remaining three — say x;, x,, x3. These in turn can be
expressed in terms of the initial conditions. At =0,
let x=x;n, ¥=Vin and a=a;,. Then, from the general
solutions, (eqs. (10)), we find that

Xin=X, + X2+ X3 (lla)
yin=i}.1x1+i12x2+i}.3x; (llb)
A =23x, A3 +4%x5, (11¢)

from which we can solve for (x;, x,, x3) in terms of
(Xina Yins ain)~

3.2. Exponential gain regime

We now assume that the FEL is operating in the
exponential regime, which corresponds to one of the
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eigen-functions dominating over the other two; for
concreteness we choose it to be the one associated
with A,. In this regime the solutions egs. (10) reduce
to

X(1) =X, (Xin, Vin»> in) €Xp(id,7) , (12a)
(1) =141 X1 (Xins Vin> Qin) €Xp (i, 7) , (12b)
a(1) =21, (Xin, Vin» Gin) €Xp(id; 7) , (12¢)

where the explicit form of x; is

Ain FA243 X0 T1{A +43) Vin
(A, +A,+A45)+ 404,

X1 (Xin» Vin» Gin) =
(13)

Single bunch. We now apply these results to an
analysis of the multicavity FEL. Consider such an
FEL consisting of N cavities, each of length L=cT.
Consider a single bunch of electron passing through
the FEL. At the entrance to the first cavity let the
initial conditions be X, = Xo, Vin = Vo Qin=do. W€ as-
sume that the growth is exponential within the cavity
and the dynamics is governed by eqs. (12). At the
end of the cavity the values of x, y and a are

x(t=T)=x{=x,(Xo, Yo, ao) exp(id, T) , (14)
y(1=T)=y{=id,X,(Xo, Yo, o) exp(iA, T) , (15)
a(t=T)=a] =A7x(Xo, Yo, ao) exp(i4, T),  (16)

where in x!, y1, a! the superscript indexes the cavity
number and the subscript the bunch number.

The electrons make their way to the second cavity
without experiencing any perturbation, so that for
the second cavity x;,=x! and y,=y|. The radia-
tion, on the other hand, remains trapped within the
first cavity, so that a;,=a,. Applying eq. (12) again,
one can calculate the values x3, y? and a? at the end
of the second cavity. Repeating this for N cavities
one can show that

x¥ = (1/DM 1) (Ce+id, G)M!
X (1/D)(ao+Cixo+Cyyo) exp(id, NT) ,  (17)

where ‘

D=4 (A=A, —23)+ 2,245, (18a)
Co=A223, (18b)
Cy=1(A,+15) . (18c)
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It is instructive to compare this expression with
that for a single cavity of length L=cNT:
x(L=cNT)=x, exp(i1,NT)

=(1/D)(ap+Cxo+Cyyo) exp(iA, NT) . (19)
We see that in either case the growth rate is the same,
and is proportional to the number of cavities. The

difference is quantitative, and lies in the numerical
pre-factors:

aV _(Cx+i/11Cy M
a(L=cNT) ~ D :

(20)

The factor (C,+i4,C,)/D is typically of order un-
ity, and for reasonable values of N (~5), there is
only around an order of magnitude decrease in the
amplitude of the final radiation field.

Multiple bunches. Next consider a second bunch
passing through the FEL. As it enters the first cavity
it has the same bunching as did the first bunch (typ-
ically none, unless a prebuncher is used ), so that the
initial conditions are x;,=X, and y;; =), However,
the initial radiation field is not ao. In its passage
through the first cavity the first bunch left behind
radiation of amplitude a! given by eq. (16). This
radiation bounces off two walls before being seen by
the second bunch (assuming the spacing between
bunches is equal to twice the length of the cavity).
Modelling the loss at each wall by a reflection coef-
ficient R, the initial value of the radiation field seen
by the second bunch entering the first cavity is
ai,,:Rza}.

One can now use eq. (12) to calculate the quan-
tities x3, vy} and a} for the second bunch at the end
of the first cavity. At the entrance to the second cav-
ity, the initial values of the bunching are those at the
end of the first cavity (x} and y}) while the initial
value of the radiation is determined by that left be-
hind in the cavity by the previous bunch (R%a?).
Proceeding thus we can write down, with some ef-
fort, a general expression for the Mth bunch at the
end of the Nth cavity:

(RO)M-1 M=V N(N+1)..(N+M-2)

xN=
M DM+N—2 (M—l)'
X (Ce+id; C)V " xy (a0, Xo, Vo)
scexp[it, (M+N—1)T], (21)
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with y3y=id,x}, and af =Aix%.

Again, to compare with the expression for the Mth
bunch at the end of a single cavity of length
L=c(NT),

(RH)M' G
DM—l

XM(L=CNT)=

Xx((ag, Xo, Yo) exp{il; MNT) . (22)

We notice a big difference between the growth rates
in the two cases. For a single-cavity FEL the growth
rate goes as the product of M and N, whereas for the
multi-cavity it goes much slower - only as their sum.
However, eq. (21) tells us that in the MC/FEL there
is still exponential growth. Though this growth may
be slower than in the single-cavity case, we have de-
rived the advantage of getting around the problem of
gain degradation due to slippage effects. Further,
since these effects are not included in eq. (22) for
the single-cavity FEL, the comparative perform-
ances of multi- and single-cavity FELs would be more
equitable than eqs. (21) and (22) suggest.

Because of the slower growth rate, a MC/FEL
would require operation with a greater number of
bunches than would a single-cavity FEL. However,
because the cavity length is now smaller, the bunches
can be more closely spaced. The total pulse width
would therefore be the same (o MN), but not, of
course, the average current (or charge) in a pulse.

The above analysis, in the exponential regime, is
simple and revealing, and indeed provided the orig-
inal motivation for the concept of a MC/FEL. How-
ever we found, in multi-particle simulations, that for
practical parameters this regime seidom persists for
periods long enough that a comparison may be made
between theory and simulation. Usually, the system
starts out in the lethargy regime, where all three ei-
genfunctions contribute, and very quickly reaches the
nonlinear regime. In the next sub-section, therefore,
we look at the lethargy regime.

3.3. Lethargy regime

We now turn our analysis to the lethargy regime,
in which all three eigenvalues contribute compara-
bly, and the approximation leading to eq. (12) can
no longer be made. We therefore go back to the gen-
eral solutions, eq. (10). Here we expand the expo-
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nentials in those equations and, arguing that the
growth is slow, keep terms only up to the cubic (the
usual approximation ). Further, we assume that the
detuning is small, so that the terms proportional to
d and p in eq. (7) can be neglected. Then the eigen-
values are just those derived in standard treatments
(e.g. Colson [4]),

A =—iw(i+y/3)/2, (23a)
dy=—iw(i—/3)/2, (23b)
Ay=—w, (23¢)
where

w={j/2)3c/2w,L , (24a)

and j is the dimensionless current density given by
[4]:
. (4L wgex ) ’ng

ime (24b)

Using the explicit forms of the cigenvalues, and us-
ing the initial conditions x=X;,, y=)i, and a=a, at
=0, the solutions in this regime, within the frame-
work of the approximations made above, can be
written as

x=Xn[ 1+ (1/6)03T*  +yint— (ain/2)7*,  (252)

y=Xin[(1/2)@0’? 1+ i [ 14 (1/6) 0’1’ —ain T,
(25b)

a= _Xin(iwsr)_yin[ (]/2)('03‘[2]
+a,[1+(i/6)w3t?] . (25¢)

We could now proceed as we did in the previous
section, considering first a single bunch through N
cavities and then M bunches. Unfortunately, the
analysis is now much more complicated, and it turns
out not to be possible to write down a general expres-
sion for N cavities and M bunches. To simplify mat-
ters and to facilitate comparison with simulation, we
consider the case when there is no pre-bunching, i.e.
Xo=Yo=0. Then, proceeding as in the previous sub-
section, and in the same notation, the value of the
radiation for the Mth bunch at the end of the Nth
cavity can be written as

ay=(RHM a1 +i* T [MN-2(M-1)1} .
(26)
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Here we have retained only the lower-order terms in
an expansion in 373, and consequently these
expressions are only valid for small M and N ( <10).
Equation (26) can be rewritten in terms of the power
(P=a*a):

Py, =Po(R?)M-2{| + [MN=2(M—1)2w°T*}
(27)

where P, is the initial input power into the first cavity.

Since, in any practical realization of the MC/FEL,
a large number of bunches will be needed to achieve
saturation, we now consider the opposite limit, i.e.
when M and N are very large. From this macroscopic
point of view, within a single cavity, during a single
pass, the power level can be taken to be approxi-
mately constant. Similarly, the bunching within a
particular cavity is negligible compared to the cu-
mulative effect of bunching over many cavities.
Consequently, one can identify two distinct time-
scales of importance in the problem. One, say z,
measures distance along the MC/FEL and is pro-
portional to N, the number of cavities. The other, say
¢, measures time from pass to pass and is propor-
tional to M, the number of bunches. Further, since
the bunching changes only down the MC/FEL and
starts afresh for each new bunch, its direct depen-
dence is only on z. Similarly, since the radiation
within a particular cavity does not couple to that
within another cavity (except via the electron beam),
its direct dependence is only on ¢.

With these considerations in mind eq. (25) can be
replaced, in the continuous limit, by partial differ-
ential equations that give the variation of x and y as
a function of z and of a as a function of &

Ix/0z=y(t, z), (28a)
dy/dz=—a(z,t), (28b)
da/dt=—iw3x(t, z), (28¢)

where we have kept only the lowest-order terms in
w?3T?. Solving these equations in the asymptotic limit
and extracting only the leading order term, one finds
that a(z, t) ~exp{az?/3t'/3), where « is some un-
determined constant. Interpreting z as N and ¢ as M,
one can write for the power P,

P~exp(2aN?3M'/3) . (29)
Equations (27) and (29) give predictions for the
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dependence of the power level upon M and N in two
different limits. We now turn to multi-particle sim-
ulations to test these predictions in the lethargy re-
gime, and to explore the behavior of the system in
the nonlinear regime.

4. Numerical simulations

In this section, we numerically study the analytic
work of sect. 3 and present performance character-
istics of three MC/FELs. A more complete descrip-
tion of our numerical study has been presented else-
where [5]. The full nonlinear equations of motion
given in eq. (1) are used in the simulations. We em-
phasize that the various approximations of the pre-
vious section, such as linearity and zero detuning,
are not made in the simulation. Parameters for the
three MC/FEL examples are listed in table 1. The
pulse length and the cavity lengths are theoretically
derived such as to avoid slippage. In all these cases,
the reflection coefficient R is taken to be equal to
0.98. However, the reflection coefficient for the right-
hand wall of the output (i.e. final) cavity is taken to
be equal to 0.95 to allow for outcoupling of radiation.

We first verify the theoretical prediction given in
eq. (27). A comparison of the theory with numerical
simulation is given in fig. 2. We see that the power
output predicted by theory agrees well with that

Table 1
Three examples of multi-cavity free-electron lasers.
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found in simulations. The agreement is good even
when there is a net loss of power due to reflections
(see fig. 2b). However, the agreement starts getting
worse as we go to larger values of M and N. Next, we
check the prediction given in eq. (29). Since eq. (29)
is an asymptotic formula and we have only a few
cavities, we are not able to check the dependence on
cavity number N. However, we have verified the de-
pendence on M for a fixed N.

We obtain the power output from a single optical
cavity with the wiggler length given in table 1. In
contrast to conventional FEL oscillators, the length
of the optical cavity is equal to the wiggler length in
our case. Next, we study a MC/FEL whose total
length is equal to the length of the single cavity con-
sidered above. The length of individual optical cav-
ities in the MC/FEL is taken to be slightly smaller
than the slippage length. All other parameters re-
main the same. The first (N —1) cavities are used to
bunch the electrons. Qutput power is extracted from
the final (Nth) cavity.

In the final two rows of table 1, we compare the
output power obtained in a single long cavity with
that obtained in the corresponding MC/FEL. In all
three examples studied, we see that the power output
in the final cavity of the MC/FEL is larger than the
power output in a single long cavity.

In sect. 3 we have provided formulae for the power
achieved in two different approximations: eq. (27)

Parameters First example Second example Third example
A (pm) 10 100 1000

‘[puls: (pS) 1 2 10

Aw (cm) 1.0 2.0 2.5

a,, 1.0 1.0 1.0
Wiggler length (m) 1.5 0.7 0.3
Cavity length (cm) 25 10 5

N 6 7 6

Fpeam (MmM) - 1.0 1.0 1.0

Tpeax (A) 5 10 5

y 27.4 12.2 4.3
Slippage length (cm) 30 12 7.5

p 3x 1073 1x1072 3x10-2
Pocam (MW) 140 124 22

P, (MW) 3.5 8.0 4.0

Pow (MW) (for single cavity) 1.2 2.6 1.2
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Fig. 2. Normalized power output ( P,/ P;,) as a function of bunch
number in the second cavity of a multi-cavity FEL. The param-
eters used are those given for the second example in table 1. Re-
sults from the theory (eq. (27)) and numerical simulation are
compared. Figures (a) and (b) differ in the value of reflection
coefficient (R) used for the cavity walls. (a) R=1.0 and (b)
R=0.98.

in the limit of small (<10) M, N, and eq. (29) in
the limit of very large M, N. The actual saturated
power obtained in the numerical simulations can also
be estimated. Assuming that the incoming electron
beam sees a static potential “‘bucket’ at saturation,
and assuming that the maximum energy lost by an
electron is equal to the bucket height, one can show
6] that the extraction efficiency (for a single elec-
tron) is given by n=1/2N,,, where N,, is the number
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of wiggler periods. Then, if the power in the electron

beam is Pyem, the saturated power level is given by
1

Psal=mpbeam' (30)

It is important to note here that NV, is the number of

wiggler periods within the last cavity, and not of the

MC/FEL as a whole.

Applying this formula to the three numerical ex-
amples considered in this section, we find the esti-
mated saturation levels to be 3, 12 and 6 MW, re-
spectively, as compared to the actual saturation levels
of 3.5, 8 and 4 MW, respectively. The estimates are
thus quite good.

5. Conclusions

The are a number of conclusions to be drawn from
this work.

First, that the concept (see fig. 1) of a multi-cavity
free-electron laser (MC/FEL) is a valid concept, i.¢.,
that a MC/FEL can be expected to work.

Second, that a MC/FEL will overcome the slip-
page between radiation and particle beam so that it
can produce radiation pulses as brief as electron
pulses (even when slippage would suggest that the
radiation pulse is longer than the particle puise).

Third, that the peak power produced in a MC/FEL
can be even higher than in a single cavity FEL, be-
cause the saturation condition implies that power in-
creases as the optical cavity is reduced in length. In
practice one should design an FEL so that the optical
cavity is made as short as possible, while still having
a net gain per pass, so as to produce the maximum
peak power.
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