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Synchronized Chaotic State: Stability and Pattern Formation
Govindan Rangarajan, Yonghong Chen and Mingzhou Ding

Abstract— We investigate the stability of the synchronized chaotic state
for coupled maps and coupled oscillators. The stability criterion is given in
terms of the coupling strengths. Pattern formation in such systems are also
studied. Methods for exciting specific spatio-temporal patterns are investi-
gated.

Keywords—Coupled dynamical systems, Chaotic synchronization, Gen-
eralized Turing patterns.

I. INTRODUCTION�
OUPLED dynamical systems are increasingly popular
since they have applications in many areas of science –

from biology[1], [2], [3] to engineering[4], [5], [6], [7], [8], [9],
[10]. In this paper, we propose a general framework to ana-
lyze the stability of synchronization and pattern formation in
coupled identical systems. Earlier attempts[11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29] have typically looked the two problems either at
systems of very small size or at very specific coupling schemes
(diffusive coupling, global all to all coupling etc. with a single
coupling strength). More recently, [30], [31] introduced the no-
tion of a master stability function that enables the analysis of
general coupling topologies. However, no explicit constraints
on coupling strengths themselves were given which is the goal
in the present paper.

Another area of great interest in coupled systems is the study
of Generalized Turing Patterns (GTP’s). These differ from the
classic Turing patterns [32] in the following sense. Whereas
classical Turing patterns emerge from homogeneous equilib-
rium states, the GTP’s emerge from global synchronized limit
cycles or chaotic states. Moreover, the underlying coupled sys-
tem need not have diffusive coupling. We show how the cou-
pling strengths can be varied along specific paths in the parame-
ter space to selectively realize admissible GTP’s for a given sys-
tem. Our methods are applicable to both coupled maps and cou-
pled ordinary differential equations (ODEs). Commonly studied
coupling schemes are used as illustrative examples.

II. STABILITY CONDITIONS

We consider the following coupled map system (the treatment
for coupled oscillators is similar):
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where � � ����� is the $ -dimensional state vector of the % th map at
time � and
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is the coupling function. We define0 �21 � �

�43
as the coupling matrix where
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gives the coupling
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strength from map 5 to map % . The condition �6�7��� � �
� ��8 is

imposed to ensure that the synchronized state is a solution.
We are interested in the linear stability of the synchronized

chaotic state �9����� . The synchronized state defines the synchro-
nization manifold in the phase space of the system. Linearizing
Eq. (1) around the synchronized state, which evolves according
to �9���	�:
�;�������9������� , we have
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where < � ����� denotes the % th map’s deviations from �9���@� , ?;� � � is
the $EDF$ Jacobian matrix for � and

BC � � � is the Jacobian
of the coupling function

 
. In terms of the $ D � matrixG �������H�I<

�
���@�J<LKM���@� �N�!� < � ������� , Eq. (2) can be recast asG ���O��
���P?;���9������� � G �����Q� 
� BO ���9���@��� � G ����� � 0SR9T (3)

The linear stability of Eq. (3) is determined by the eigenvalueU
of
0

. Denote the corresponding eigenvector by V and letWX�����=� G ����� V where we have suppressed the dependence onU
for notational simplicity. Then
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We note that the stability problem originally formulated in the$eD � space has been reduced to a problem in a $fDg$ space
where it is often the case that $ih �

.
Next, we calculate the Lyapunov exponents (which depend

on
U

) from the above equation. If all Lyapunov exponents trans-
verse to the synchronization manifold are negative, the synchro-
nized state is stable since any deviation away from the synchro-
nized manifold will quickly die down. We can formulate this
in terms of the eigenvalues of

�
(the coupling matrix) as fol-

lows. Treat
U

in Eq. (4) as a complex parameter and calcu-
late the maximum Lyapunov exponent j@kml4n as a function ofU

. This is referred to as the master stability function by Pecora
and Carroll [30]. The region in the ��op`M� U �#"�qdrs� U ��� plane wherej ktl4n	u 8 defines a stability region denoted by v . If the trans-
verse eigenvalues of the coupling matrix are within v , then the
synchronized state is stable [36]. By transverse eigenvalues we
mean those eigenvalues in Eq. (4) which correspond to dynam-
ics in the manifold transverse to the synchronization manifold.
We note that, typically, v is obtained numerically. In some in-
stances analytical results are possible (see below).

Stability region v gives constraints on the eigenvalues of the
coupling matrix which ensure the stability of the synchronized
state. Here we seek constraints applicable directly on the cou-
pling strengths. This problem is dealt with by combining the
master stability function with the Gershgörin disc theory. The
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Gershgörin disc theorem[37] states that all the eigenvalues of a� D � matrix � �Z1 � � � 3 are located in the union of � discs (called
Gershgörin discs) where each disc is given by������� &
	 ��� � � � 	 u � � � �

	 � � � 	�� " % � 
M"��L" T!T!T "�� T (5)

Note that
U �'8 is always an eigenvalue of

0
and its cor-

responding eigenvector is ��
S
 T!T!T 
� R which is tangential to
the synchronization manifold. However, for stability of the syn-
chronized state, we only require the transverse eigenvalues to
lie in v . Therefore, we need to remove

U �'8 before apply-
ing the Gershgörin disc theorem. In other words, for synchro-
nized chaotic systems, the stability region does not include the
origin. In order to exclude

U � 8 , we appeal to an order reduc-
tion technique in matrix theory [39] which leads to a reduced� � � 
� D � � � 
Y� matrix whose eigenvalues are the same as
the eigenvalues of

0
except for

U ��8 .
Applying the Gershgörin theorem to the reduced matrix, the

stability conditions of the synchronized dynamics can be ex-
pressed as [40]
1. � � � � � ��� � "�8L� � v .

2. �����@� � � � �
	 � � � � ��� � 	 u�� � � � � � ��� � �#" % �Z
M"��L" T!T!T " ��� %����

.
As
�

varies from 
 to
�

, we obtain
�

sets of stability conditions.
Each set provides sufficient conditions constraining the coupling
strengths.

As an example, we consider a coupled map system with

 �� [23], [24], [25], [26], [27], [28], [29]. Under this assumption,
BC ��? and the linearized equation [cf. Eq. (4)] reduces to

WX���	��
Y�9�Z� U� ��
� ?;���9���@����W����@� T (6)

The Lyapunov exponents for Eq. (6) are easily calculated ana-
lytically. Denoting them by j � � U � , j K � U � , . . . , j * � U � , we have

j � � U �;��� � � �"! 	 U� ��
 	 " % �2
)"#� " TNT!T " $ T (7)

For stability, we require j ktl#n � U �9��� ktl4n �$��! 	 U� ��
 	 u 8
for all

U ��:8 . In other words, the stability zone is defined by	 U � � 	 u � `�%'&�� � � ktl4n �#" U ���8 T (8)

The distance from the center of each Gershgörin disc to
the boundary is easily calculated to be � � � � � � ��� � � �� `�%(&�� � � ktl4n � � 	 � � � � � � ��� � 	 ( % � 
)" T!TNT " � " %)�� � ).
Thus the conditions of stability are

���7��� � � � �
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)" T!TNT " � " %��� � " � �2
 \Y^*� \_^ �!�N� \Y^ � T

For each
�

from 
 to
�

, we obtain a set of sufficient stability
conditions.

In [41], a simple stability bound for synchronized chaos in the
case of symmetric coupling was obtained as1 
 � `+%'&�� � � ktl#n � 3 u � � � u 1 
�� `�%(&�� � � ktl4n � 3 "-, % " 5 T (10)

This can be derived from the general stability condition in Eq.
(9) by averaging.

Next, we consider a popular system of
�

identical maps with.
nearest neighbor coupling where exact results are available

� � ���C�:
Y� � ����� � ��������� 
� . /�0 ��� � 0 1 �L���
� 1 0 �]�������

����� � 2 0 ������� � �_����� � ������� 3 "
where 5 � 
M"��L" T!T!T " � . The coupling matrix is cyclic and shift
invariant. Therefore its eigenvectors have the following form
[26],

V43 �65 `�%'&��7�98 %�:� �#"7`�%'&��<;=8 %�:� �#" �N�!� "�`�%'&��7� � 8 %�:� �?> R "
(11)

where : � 8 "!
)" TNT!T " � � 
 . Here : � 8 corresponds to the
synchronized case. Eigenvalues of the coupling matrix are given
by

U 3 � � � �. /�0 ��� � 0A@CB ! K 8(D � : � 
�� " : � 8 "N
M" T!T!T " � � 
 (12)

Recasting inequality (8) using the above expressions for eigen-
values and their symmetry, we get the following exact stability
conditions 	 
 � �. /�0 �@� � 0A@CB ! K � 8'D :� � 	 u `+%'&�� � � � �#" (13)

where : �:8 "!
)" TNT!T " � K \Y^ � 2
�
K .

As a numerical example we consider coupled logistic maps in
the chaotic regime where E �<FQ� � 
 � �'F K with � � 
 T G . The
maximum Lyapunov exponent � � is 0.549. For simplicity, we
restrict ourselves to

� �IH and
. �J� . The stability conditions

for the synchronized chaotic state are:
 � `�%'&�� � � � � u � � @CB ! K �K8 :7L HM����� K @CB ! K �7�98 :7L H)� u 
� `+%'&�� � �
� �#"

(14)
where : � 
)"#� . On the other hand, from Eq. (9), we get the
following sufficient stability bounds


 � `�%(&�� � � � � u 
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 � `�%'&�� � � � �4"

 � `�%(&�� � � � � u � � � 
; � K u 
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Comparing this sufficient condition to the exact solution Eq.
(14), we see that our conditions are a very good approximation
to the exact bound.

III. PATTERN FORMATION

We now turn to the problem of pattern formation in coupled
systems. It turns out this has an intimate connection with the
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stability problem we had studied in the previous sections. In the
stability problem, the eigenvalues of the coupling matrix played
an important role. In the study of pattern formation, the eigen-
vectors of the matrix play an equally important role.

Given a coupled system, using the stability bounds on cou-
pling strengths, we selectively realize any admissible pattern we
desire [46]. This is done by destabilizing a particular eigen-
mode. This in turn is achieved by varying the coupling strengths
such that we cross the stability boundary along a particular path.
Of course, to do this accurately we need exact expressions for
the stability zone boundaries. However, even the sufficient con-
ditions that we had derived earlier can provide adequate guid-
ance in the absence of such information. We note that our ap-
proach of obtaining stability bounds in terms of the coupling
strengths makes pattern selection quite simple. Since the cou-
pled system is specified in terms of coupling strengths, varying
them to achieve pattern selection is easily done.

Equally important, our approach enables us to obtain gener-
alizations of the classic Turing patterns. In the classic approach,
the synchronized state is an equilibrium point which is destabi-
lized to give a Turing pattern with a simple time evolution of
the spatial pattern. In our case, the synchronized state can be
chaotic and consequently the temporal evolution of the spatial
pattern is also chaotic. Further, our couplings need not be diffu-
sive. We call the more general spatiotemporal patterns that we
obtain as Generalized Turing Patterns (GTP’s).

For general couplings, the spatial pattern is not necessary a
Fourier mode of the linearized system like the Turing’s origi-
nal case. However when the coupling matrix is shift-invariant,
the eigenmodes will continue to be Fourier modes. In the fol-
lowing we obtain an explicit strategy for adjusting the coupling
parameters to get a specific pattern. The difference in the tempo-
ral evolution of the patterns that emerge from the synchronized
equilibrium points and synchronized chaotic states is also high-
lighted.

Let us consider a system of
�

identical maps with
.

nearest
neighbor coupling whose dynamical equations are given in Eq.
(11). This system has a general non-diffusive coupling which is
different from the diffusive coupling used in reaction-diffusion
systems. However, the coupling matrix is still shift-invariant and
therefore the eigenvectors of the coupling matrix shown in Eq.
(11) are the Fourier modes. Further, the inequalities (13) define
a stability region in the parameter space spanned by the coupling
strengths � 0 ’s. By selecting a given Fourier mode and choosing
a suitable path in the parameter space we can realize the cor-
responding GTP. Note that, if one considers only the nearest
neighbor (

. �2
 ) diffusive coupling, the parameter space is one
dimensional and at most two GTPs can be excited by varying the
coupling strengths. By enlarging the parameter space we obtain
much greater variety in terms of GTPs that can be realized.

As a numerical example we consider coupled logistic maps
in the chaotic regime where E �<FQ�S� 
 � �'F K with ��� 
 T G .
For

� � H and
. � � , we have the stability conditions for the

synchronized chaotic state given in Eq. (14). In Fig. 1(a), we
exhibit the stability region marked black in the parameter plane.
Next we consider the five eigenvectors [cf. Eq. (11)] which
correspond to Fourier modes in this case. The eigenvector V �
corresponds to the synchronized state and is excluded. Of the

remaining 4 eigenvectors, only 2 are independent by symmetry
of Fourier modes. We take these to be V � and V K [cf. Eq. (11)]
corresponding to : � 
 and : � � respectively. We call the : �Z
mode the long wavelength (LW) pattern and the : �I� mode the
short wavelength (SW) pattern. The arrows in Figure 1a indi-
cate paths in the parameter space which allow us to selectively
destabilize one of these two modes and realize the correspond-
ing spatial pattern.

Fig. 1. Pattern selection from the synchronized chaotic state in a 1-d map lat-
tice ( ����� ). In (a), the region of stable synchronization (black area) and
distinct pattern selection directions are shown. In (b), temporal evolution of
the long wavelength pattern is given with �	�
���� �������������� � . In (c), tem-
poral evolution of the short wavelength pattern with � � ���� ������� � ������
is given.

The main frame in Fig. 1(b) shows the temporal dynamics of
the long wavelength pattern for � � � 8 T G! and � K �28 T 
 . Here
deviations from the synchronization manifold is approximated
by � � ���@�@�IF � ���@� � ������� F

� ���@�� " % �Z
)"#� " �!�N� " �
with

� � H . To facilitate visualization, at each time step � ,
a continuous function is splined through the six discrete nodes:� � ���@� , � K ����� , �!�!� , �	" ����� , and

��# ����� � � � ���@� . Furthermore, to
overcome the distortion due to the two opposite phases of a pat-
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tern, we monitor the deviation at a given node and multiply the
deviations at every node by

� 
 whenever the deviation at the
monitored node becomes negative.

Since the bifurcation undergone by the system at the bound-
ary of the stability region is the blow-out bifurcation and there is
only one attractor prior to the bifurcation, the temporal dynam-
ics in this case is referred to as on-off intermittency [36], [26],
[42], [43], [44]. The temporal evolution of the deviations at a
typical node is given by the curve to the left of the main pattern
frame. Its bursting behavior is characteristic of on-off intermit-
tency. The GTP itself is given at the bottom of Fig. 1(b). For� � � 8 T 8 ; and � K �-
 T 
 we observe the short wavelength pat-
tern in Fig. 1(c). The same visualization methods are used to
make this figure.

IV. CONCLUSIONS

We studied stability of synchronized states in coupled iden-
tical systems using linear eigenvalue analysis. Applying Ger-
shgörin disc theorem to the eigenvalues of the coupling matrix,
quite general constraints on the coupling strengths which ensure
the stability of the synchronized chaotic state were obtained.
Stability of the synchronized chaotic state was studied for var-
ious examples. Then we studied pattern formation in coupled
systems. By destabilizing a synchronized chaotic state, we ob-
served the emergence of generalized Turing patterns with inter-
esting temporal evolution. Different patterns were selectively
realized in a simple manner by varying the coupling strengths
along a specified path in the parameter space. In the analysis,
both eigenvalues and eigenvectors of the coupling matrix were
found to play crucial roles.
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