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Abstract

In this article, different methods of computing Lyapunov exponents for continuous-time

dynamical systems are briefly reviewed. The relative merits and demerits of these methods

are pointed out.

1. Preliminaries

The problem of detecting and quantifying chaos in a wide variety of systems is an

ongoing and important activity. In this context, computing the spectrum of Lyapunov

exponents has proven to be the most useful dynamical diagnostic for chaotic systems.

The Lyapunov exponents give the average exponential rates of divergence or convergence

of nearby orbits in the phase-space. In systems exhibiting exponential orbital divergence,

small initial differences which we may not be able to resolve get magnified rapidly leading
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to loss of predictability. Any system containing atleast one positive Lyapunov exponent is

defined to be chaotic, with the magnitude of the exponent reflecting the time scale on which

system dynamics become unpredictable.

For systems whose equations of motions are explicitly known, there exist several meth-

ods for computing Lyapunov exponents. In this paper, we briefly describe these various

methods, their advantages and disadvantages.

Let us consider an n dimensional continuous-time dynamical system,

dz

dt
= F (z, t), (1)

where z = (z1, z2, ..., zn) and F is a n-dimensional vector field. Let Z(t) = z(t) − z0(t)

denote deviations from the fiducial trajectory z0(t). Linearizing eq(1) around z0(t), we have

dZ

dt
= DF (z0(t), t) . Z, (2)

where DF denotes the n × n Jacobian matrix.

The linearized equations are integrated along the fiducial trajectory to yield the tangent

map M(z0(t), t) which takes the set of initial variables Zin into the time-evolved variables

Z(t), where

Z(t) = M(z0(t), t) Zin. (3)

The evolution equation of M is given by

dM

dt
= DF M. (4)

Let Λ be an n × n matrix given by

Λ = lim
t→∞( M M t )1/2t, (5)

where M t denotes the transpose of M . The Lyapunov exponents are the logarithm of the

eigenvalues of Λ [1].
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All the methods of computing Lyapunov exponents are either based on the QR or

the singular value decomposition. In the following sections, we will describe some of these

methods.

2. Singular Value Decomposition method

Let

M = U F V t (6)

be the singular value decomposition (SVD) of M into the product of the orthogonal matrices

U , V and the diagonal matrix F = diag( σ1(t) , σ2(t) , ..., σn(t) ). The diagonal

elements of F are called the singular values of M . The SVD is unique up to permutations

of the corresponding columns, rows and diagonal elements of the matrices U , V and F .

A unique decomposition can be achieved by requesting the singular value spectrum to be

strictly monotonically decreasing singular value spectrum, i.e., σ1(t) > σ2(t) > ... > σm(t) .

Postmultiplying eq(6) with the M t = V F U t shows, that the squares of the singular

values σt(t) of M are the eigenvalues of the matrix M M t [2]. Therefore, from eq(5), we

have the relation between the Lyapunov exponents λi , the eigenvalues μi of Λ and the

singular values σi(t) , i = 1, 2, ..., n as follows:

λi = log μi = lim
t→∞ log ( σ2

i (t) )1/2t = lim
t→∞

1

t
log σi. (7)

The geometric intepretation of this method is explained in the reference [3].

Following Ref. [3], we will now formulate the differential equations for the quantities

that are needed to compute the Lyapunov spectrum in terms of the singular value decom-

position. Let us introduce a matrix E , where

E = log F = diag( ε1, ε2, ..., εn ), (8)

where the elements εi = log σi (i = 1, 2, .., n) . Differentiating E with respect to time,
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yields

E ′ = F−1 F ′, (9)

where

F ′ = U t DF U F − U t U ′ F − F (V ′)t V. (10)

This is got by subtituting eq(6) in eq(4) and differentiating w.r.t time. Due to the orthogo-

nality of U and V , we have

V t V ′ + (V ′)t V = 0, (11)

U t U ′ + (U ′)t U = 0. (12)

Let us denote

A = U t U ′, (13)

B = −F−1 A F, (14)

C = U t DF U, (15)

D = F−1 C F. (16)

Also, E ′ + (E ′)t = 2E ′ yields

2 E ′ = B + Bt + D + Dt. (17)

To compute the Lyapunov exponents, the diagonal elements of E ′ need to be calculated.

For this, we see from the above equation that the elements of matrices B and D are

required. They are given by

Bij = −Aij
σj

σi

, (18)

Dij = Cij
σj

σi

. (19)

Since U is orthogonal, A is skew-symmetric and Bii = 0 , i = 1, 2, .., n . The diagonal

elements ε′i of E ′ therefore satisfy the equation:

ε′i = Cii. (20)
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The above equation can used to compute the Lyapunov exponents limt→∞εi(t)/t i = 1, 2.., n

provided U is known as a function of time.

To determine U(t), consider the off-diagonal elements in eq(17), the n(n− 1)/2 equa-

tions

−Aij
σj

σi

− Aji
σi

σj

+ Cij
σj

σi

+ Cji
σi

σj

= 0, i > j (21)

To get rid of the exponentially growing quantities, eq(21) is multiplied by σi/σj . Let

hij = σ2
i /σ

2
j = exp (2(εi − εj)), i �= j. (22)

Therefore, we have

Aij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cji + Cij hji

hji − 1
, i �= j

0, i = j
Cij + Cji hij

1 − hij

, i > j

(23)

The time evolution of U can now be determined by integrating the following differential

equation

U ′ = U A. (24)

In case of a non-degenerate spectra, the singular values constitute a strictly monotonically

decreasing sequence for large time.

When the above differential equation for U is solved, the orthogonality of U is quickly

lost and one has to perform reorthogonalization every now and then. In case of a degen-

erate Lyapunov spectra, the matrix A becomes singular. This is another disadvantage

of this method. Also, it requires more operations than the QR method, which will be de-

scribed in the following section. Further, evaluation of a partial Lyapunov spectrum can be

computationally costly beyond a certain threshold [3].

5



3. QR Decomposition method

We know that any non-singular matrix can be uniquely decomposed into a product of

an orthogonal matrix and an upper-triangular matrix with positive diagonal elements. Using

this knowledge, we decompose the tangent map M as

M = Q R, (25)

where Q is an n × n orthogonal matrix and R is an n × n upper-triangular matrix with

positive diagonal elements Rii . The Lyapunov exponents are given by

λi = lim
t→∞

1

t
log (Rii). (26)

In general, in the limit t → ∞ the Lyapunov exponents constitute a monotonically de-

creasing sequence[4].

Substituting eq(25) in the eq(4), we have

Q′ R + Q R′ = DF Q R. (27)

Premultiplying and postmultiplying the above eq with Q−1 = Qt and R−1 respectively,

we have

Qt Q′ − Qt DF Q = − R′ R−1. (28)

The right hand side is an upper-triangular matrix with diagonal elements −R′
ii/Rii , while

the Qt Q′ is a skew-symmetric matrix. Let

S = Qt Q′. (29)

Therefore, the differential equation for Q is given by

Q′ = Q S. (30)

The equations for the diagonal elements of R are given by

R′
ii

Rii

= ( Qt DF Q )ii, (1 ≤ i ≤ n). (31)
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Using the above equations, the Lyapunov exponents can be computed. This method is

discussed in detail in reference[3]. This method also suffers from most of the disadvantages

of the previous method.

In the following section, we shall see how things get simplified by using group-theoretical

representations of the orthogonal matrix.

4. MMt method

In this section, we describe a method utilizing representations of orthogonal matrices

applied to the decompositions of the tangent map product MM t . In this method [4], a

matrix A is introduced[5], where

A = MM t. (32)

The time-evolution of A is given by the following equation:

dA

dt
= DF A + A DF t. (33)

Since this matrix is symmetric and positive definite, it can be written as an exponential of a

symmetric matrix S. Moreover, any symmetric matrix can be diagonalised by an orthogonal

matrix. Therefore, we have

A = exp(B) (34)

= exp( O D Ot) (35)

= O exp(D) Ot, (36)

where O is an n× n orthogonal matrix, and D is an n× n diagonal matrix, whose diagonal

elements are the Lyapunov exponents multiplied by time. Since D is already in the exponent,

there is no need for rescaling.

An easy to obtain group-theoretical representation of the orthogonal matrix is used

for the matrix O [6]. This ensures that the number of variables used to characterize the
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system is minimum. The number of parameters needed to characterize O and D are n(n −
1)/2 and n respectively, giving a total of n(n + 1)/2. This method also maintains the

orthogonality without any need for rescaling. Hence, the numerical errors can never lead to

loss of orthogonality.

The working of this method can be explained by taking the example of n = 2 case. O

is represented by the following matrix:

(
cos θ sin θ
− sin θ cos θ

)
. (37)

D is given by (
λ1 0
0 λ2

)
. (38)

The Jacobian matrix DF is given by

(
df11 df12

df21 df22

)
. (39)

Substituting these expressions for A in eq(33), we have

dλ1

dt
= df11 + df22 + (df11 − df22) cos 2θ − (df12 + df21) sin 2θ, (40)

dλ2

dt
= df11 + df22 − (df11 − df22) cos 2θ + (df12 + df21) sin 2θ. (41)

(42)

Similarly, the differential equation for θ can also be obtained. The next method to be

discussed is a variant of the above method with further advantages.

5. Continuous QR method using representations of or-

thogonal matrices

In this method [4], the orthogonal matrix Q is represented as a product of n(n − 1)/2

orthogonal matrices, each of which corresponds to a simple rotation in the i − jth plane
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(i < j) . Denoting the the matrix corresponding to this rotation by Qij , its matrix elements

are given by:

Q
(ij)
kl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if k = 1 �= i, j;
cos θ if k = 1 = i orj;
sin θ if k = i, l = j;
− sin θ if k = j, l = i;
0 otherwise

where θ is an angle variable. Then, the matrix Q is represented by:

Q = Q(12) Q(13)...Q(1n) Q(23)...Q(n−1,n). (43)

So, we have n(n − 1)/2 angle variables denoted by θi , i = 1, .., n(n − 1)/2 . Here, Q is

represented by a special orthogonal matrix because of the choice of initial conditions. We

choose the identity matrix as the initial orthogonal matrix. Since we start with a matrix from

the SO(n) component of the group of orthogonal matrices, due to continuity, we remain in the

same component for all time. Hence, we are justified in choosing Q to be an SO(n) matrix.

Since the upper-triangular matrix has positive diagonal elements, it can be represented as

follows: ⎛
⎜⎜⎜⎜⎜⎜⎝

exp λ1 r12 ... ... r1n

0 exp λ2 r23 ... r2n

: : : : :
: : : : :
0 0 0 0 exp λn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (44)

Using the representations of Q , Qt Q′ is given by

⎛
⎜⎜⎜⎝

0 −f1(θ
′) ... −fn−1(θ

′)
f1(θ

′) 0 ... −f2n−3(θ
′)

: : : :
fn−1(θ

′) ... fn(n−1)/2(θ
′) 0

⎞
⎟⎟⎟⎠ , (45)

where θ′ = (θ′1, θ
′
2, .., θ

′
n(n−1)/2).

Substituting the above matrices in eq(27), we have

λ′
i = ( Qt DF Q )ii. (46)

The equations for the angles are given by

f1(θ
′) = (Qt DF Q)21 ; f2(θ

′) = (Qt DF Q)31 ; ...; fn(n−1)/2(θ
′) = (Qt DF Q)n,n−1.

9



The Lyapunov exponents are given by

lim
t→∞

λi

t
, i = 1, 2, ..., n.

Here again, we need minimum number of parameters to characterize the system and

there is no need for rescaling. Furthermore, numerical errors can never lead to loss of

orthogonality. This method has other advantages over the previous ones. The equations for

θi are decoupled from the equations for λi . Hence, we need not worry about degenerate

spectra. Another very interesting feature of this method is the dependence of λ1
′ on the

first (n − 1) θi’s, λ2
′ on the first (2n − 3) θi’s and so on. Therefore, to obtain the first

two λi ’s, one needs to solve only (2n − 1) equations. In general, to solve for the first m

Lyapunov exponents, one has to solve m(2n−m+1)/2 equations which is always less than

n(n + 1)/2 for m < n . Therefore, the partial spectrum can be easily calculated unlike in

the methods listed above. This is a major advantage of this method.

In the n = 2 case, Q is parametrized as(
cos θ1 sin θ1

− sin θ1 cos θ1

)
. (47)

R is written as, (
exp λ1 r12

0 exp λ2

)
. (48)

The Jacobian matrix DF may be written as:(
df11 df12

df21 df22

)
. (49)

Substituting the above into eq(27), we have

dλ1

dt
= df11 cos2 θ1 + df22 sin2 θ1 − 1

2
(df12 + df21) sin 2θ1, (50)

dλ2

dt
= df11 sin2 θ1 + df22 cos2 θ1 +

1

2
(df12 + df21) sin 2θ1. (51)

The equation for θ1 is given by

dθ1

dt
= − 1

2
(df11 − df22) sin 2θ1 + df12 sin2 θ1 − df21 cos2 θ1. (52)
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The above equations are numerically integrated till the desired convergence for the Lyapunov

exponents λ1/t and λ2/t is achieved. This method also preserves the global invariances

of the Lyapunov spectrum. This method is discussed in detail in the reference [4].

6. Conclusion

In this paper, we have briefly reviewed some of the methods for computing the Lyapunov

exponents of continuous-time dynamical systems. The advantages accrued by using a group-

theoretical representation of orthogonal matrices were brought out. It should also be noted

that the methods reviewed can be applied to discrete maps with appropriate modifications

[3,7].
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