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Given a Hamiltonian system, one can represent it using a symplectic map. This symplectic
map is specified by a set of homogeneous polynomials which are uniquely determined by
the Hamiltonian. In this paper, we construct an invariant norm in the space of homoge-
neous polynomials of a given degree. This norm is a function of parameters characterizing
the original Hamiltonian system. Such a norm has several potential applications.
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1. Introduction

Hamiltonian systems form an important class of dynamical systems. It is important to be able to quantify the nonlinear
content of Hamiltonian systems through an appropriate quantity. This can then serve as a merit function for optimizing the
performance of the Hamiltonian system as a function of the parameters characterizing the Hamiltonian system. In particular,
one can try to maximize the stability region of the system (in the context of particle accelerators [6]), minimize optical aber-
rations (in the context of optical systems [8]), etc. We quantify the nonlinear content of the Hamiltonian system using its
corresponding symplectic map.

Symplectic maps and invariants have been successfully used to better understand the Hamiltonian systems [1–3,5,6,
9–11,13–20,26,27]. In fact, the time evolution of the Hamiltonian system with 2n degrees of freedom can be directly de-
scribed by the symplectic map, say M, generally specified by a set of homogenous polynomials in the 2n phase space vari-
ables of the Hamiltonian system and of a certain degree [9]. The nonlinear content of M (and hence of the original
Hamiltonian system) is given by homogeneous polynomials of degree greater than two. However, this representation is
not very useful to explicitly compute the nonlinear content as it involves an infinite series. This limitation is overcome by
employing Lie perturbation theory where we consider the terms degree by degree in the space of homogenous polynomials.
Further, we require that the quantity characterizing the nonlinear content be invariant under the action of an appropriate
symmetry group. Here, the underlying symmetry group for the full M turns out to be an infinite dimensional, non-compact,
Lie group. This implies that it is not possible to construct a quantity invariant under the full symmetry group. Consequently,
rather than quantifying and minimizing the entire nonlinear content in M, we will in fact restrict ourselves to doing the
same for symplectic maps with homogeneous polynomials truncated at degree 3. This is in line with the perturbative ap-
proach that we have adopted since the leading order nonlinearity in M comes from homogenous polynomials of degree
3. Furthermore, as we shall see later, for a quantity to remain invariant under the action of the above truncated symplectic
map, it is sufficient to demand that it remains invariant under the linear part of the symplectic map since the nonlinear term
contributes only a fourth order correction that we can ignore (in the spirit of perturbation theory) having truncated at degree
3. By this process, we have also reduced the dimension of the underlying symmetry group to be the finite dimensional real
. All rights reserved.
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symplectic group Spð2n;RÞ. Since even this group is non-compact, we still are not in a position to define any quantity that is
invariant under its action. To get around this problem, we put the truncated symplectic map into what is known as its ‘‘nor-
mal form” using a symplectic (canonical) transformation. Now, the symmetry group for the normal form is the group of real
symplectic orthogonal matrices. We note that this is isomorphic to the compact unitary group U(n). Hence, we can now re-
strict ourselves to finding a quantity in the space of homogenous polynomials of degree 3 in the 2n phase space variables that
is invariant under the action of the above unitary group. This is accomplished by performing an invariant integration over
U(n) of a suitable function. An earlier, approximate treatment can be found in [28]. Once we have an invariant, we can
use this as a merit function to determine optimal values of the system parameters and consequently, enhance the ‘‘perfor-
mance” of the system.

2. Symplectic maps and homogeneous polynomials

Through our discussion in the first section, it is quite clear that the homogenous polynomials of the phase space variables
play a vital role in the Lie perturbation theory of Hamiltonian dynamics. In this section, we shall fix notations and build the
theory to that extent in order that we give a meaningful representation of any homogenous polynomial of a certain degree in
terms of the basis monomials of the appropriate space.

Consider the Hamiltonian system given by 2n phase space variables that we denote by
z ¼ ðq1; q2; . . . ; qn;p1; p2; . . . ;pnÞ:
For any fixed phase space function f(z), let Lf denote the corresponding Lie operator defined on the space of phase space
functions by
Lf g :¼ ½f ; g� ¼ fg � gf :
It is then a simple observation that the above defined bracket is anti-symmetric and linear that satisfies
[f, (gh)] = [f,g]h + g[f,h]. The exponential of the above defined operator is called the Lie transformation that is again defined
on the space of phase space functions.
ðeLf ÞðgÞ :¼
X
nP0

Ln
f

n!

 !
ðgÞ ¼ g

0!
þ ½f ; g�

1!
þ ½f ; ½f ; g��

2!
þ ½f ; ½f ; ½f ; g���

3!
þ � � � :
The effect of the Hamiltonian system on a particle can be formally expressed as the action of a map M that takes the par-
ticle from its initial state zin to its final state zfin, i.e., zfin ¼Mzin. It can be shown that M is a symplectic map, [6,9]. Symplectic
maps are maps whose 2n � 2n Jacobian matrices M(z) satisfy the ‘symplectic condition’ given by gMðzÞJMðzÞ ¼ J, where eM
represents the transpose of M and J is the fundamental symplectic matrix given by
J ¼
0 I

�I 0

� �
:

Here I is an n � n identity matrix. The set of all symplectic matrices form the real symplectic group Spð2n;RÞ. This finite
dimensional non-compact real symplectic Lie group is the underlying symmetry group for the linear part of the symplectic
map M with n degrees of freedom. The symplectic map can be factorised using the result due to Dragt and Finn.

Lemma 1 (Dragt–Finn Factorisation Theorem, [7]). The symplectic map M can be factorised as
M ¼ bMeLf3 eLf4 � � � eLfn � � � ;
where, bM gives the linear part of the map while the infinite product of Lie transformations eLfn ;n ¼ 3;4; . . . represents the nonlin-
ear part of M. Here, fn denotes a unique homogenous polynomial in the phase space variables of degree n.

Observe that the linear part bM of the symplectic map M has an equivalent representation in terms of the Jacobian matrix
M of the map M,
bMzi ¼ Mijzj ¼ ðMzÞi:
We now undertake the task of indexing the basis monomials appropriately. Although this is a simple task, we urge the
reader to look at its significance in the later sections. Let us denote by PðmÞ, the space of all homogenous polynomials in z

of degree m. Let PðmÞa

n o
be the basis for this space. By a result due to Nijenhuis and Wilf [24], we know that the dimension

of this space is given by
Nð2n;mÞ ¼
2nþm� 1

m

� �
:

We take the basis PðmÞa ðzÞ to be the basis monomials of degree m in the 2n variables,
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PðmÞa ðzÞ ¼ qr1
1 pr2

1 � � � qr2n�1
n pr2n

n ; 1 6 ri 6 m; Riri ¼ m:
Adopting the method suggested by Giorgilli in [12], we now associate to each basis monomial, a convenient numerical index.
Let
iðr1; r2; . . . ; r2nÞ ¼
X2n

j¼1

j� 1þ
Pj�1

k¼0
r2n�k

j

0B@
1CA:
One can then easily observe that qm
1 is the first monomial with degree m while pm

n is the last monomial, i.e.,
iðm;0; . . . ;0;0Þ ¼min iðr1; r2; . . . ; r2nÞ;
ið0;0; . . . ;0;mÞ ¼max iðr1; r2; . . . ; r2nÞ; R ri ¼ m:

ð1Þ
Also observe that Eq. (1) gives the total number of monomials of degree m. Hence, the following definition of a makes sense.

Lemma 2. Define a value a for the elements in the basis monomials PðmÞa

n o
by
aðr1; r2; . . . ; r2nÞ ¼ iðr1; r2; . . . ; r2nÞ � ið0;0; . . . ;0;m� 1Þ:
Then a defines a unique number between 1 and N(2n,m) for each of the elements in PðmÞa

n o
.

The above defined quantity a could well provide us an index for the basis monomials. Thus, any polynomial fm(z) is
spanned by a linear combination of elements in the basis and hence has the representation;
fmðzÞ ¼
XNð2n;mÞ

a¼1

caPðmÞa ðzÞ;
where the quantities ca are real constants.
We shall confine our interest, for purposes of this paper to single particle dynamics (with 3 degrees of freedom). The con-

struction of an arbitrary n-dimensional unitary transformation U(n) has been discussed in sufficient detail in Poźniak et al.
[25] among other papers. Our aim is to go through U(3) (the relevant group) to complete our calculations. We shall remark
that the product of the volume element by any positive constant still remains the element of volume of that appropriate uni-
tary group. In fact, we shall normalize the element of volume of the n-dimensional unitary group by multiplying to it a factor
of (1/2p)n.

3. Quantification of the nonlinear content

In this section, we define a norm that is invariant under an appropriate symmetry group and moreover quantifies the non-
linear content of the Hamiltonian system. We start with the nonlinear Hamiltonian. We assume that it depends on certain
parameters collectively denoted by s. Our goal is to obtain optimal values for these parameters so that the ‘‘performance” of
the system is enhanced. For example, we may wish to maximize the stability region around the operating point of the system
in phase space by optimizing the above parameter values.

We represent the action of the Hamiltonian system on a particle using the symplectic map M. Next, we factorize M using
the Dragt–Finn factorization as
M ¼ bMeLf3 eLf4 � � � eLfn � � � :

Explicit expressions for bM and fn can be obtained from the Hamiltonian using a standard procedure [7,9]. Consequently, evenbM and fn now depend on s (we have suppressed this dependence for notational convenience). Since the above factorization
cannot be explicitly evaluated, we first truncate the symplectic map to degree 3 (thus retaining only the leading order of
nonlinearity):
M �M3 ¼ bMeLf3 :
Thus we are restricting ourselves to quantifying only the leading order of nonlinearity. This suffices for most practical prob-
lems since it is this leading order which contributes maximally to the nonlinearity.

We would like the quantity characterizing the nonlinear content to be invariant under the action of M3. Now the sym-
metry group for the linear part bM for n degrees of freedom is the finite dimensional non-compact Lie group Spð2n;RÞ. A quan-
tity that is invariant under the linear part would also be invariant under M3 ¼ bMeLf3 , since the nonlinear term contributes
only a fourth order correction. Therefore, the relevant symmetry group for our purpose would be Spð2n;RÞ. However, as
Spð2n;RÞ is non-compact, there can be no metric that is invariant under the action of this group. To get around this problem,
we first convert bM into its so-called ‘‘normal form” using a symplectic transformation.

Let A be the symplectic transformation that takes M into its normal form N = A�1MA. The normal form N is a block diagonal
matrix with each block a rotation in position-momentum plane. This is equivalent to transforming to action-angle variables
in conventional canonical perturbation theory. See [9] for further details. The normal form N3 of the symplectic map M3 is
given by



2498 G. Rangarajan, S. Sridharan / Applied Mathematics and Computation 217 (2010) 2495–2500
N3 ¼ A�1
M3A ¼ A�1MAA�1eLf3 A ¼ Ne

Lf tr
3 ;
where
f tr
3 ¼ A�1f3ðzÞ ¼ f3ðA�1zÞ:
Since A is dependent upon M, so is f3. The homogenous polynomial f tr
3 can be expressed as a linear combination of the basis

monomials as
f tr
3 ðzÞ ¼ baPð3Þa ðzÞ;
where ba are real constants. Note that ba would depend on the parameters s. The symmetry group for N (and consequently
for N3) is the group of real symplectic orthogonal matrices and this is isomorphic to the unitary group U(n) [9].

We now provide an explicit construction of a quantity that characterizes the leading order nonlinearity of the symplectic
map (and hence the Hamiltonian system that this map represents). First, we construct an invariant metric on the space of
homogenous polynomials of a given degree m in 2n phase space variables. By its very name, it is clear that we are looking for
a symmetric, positive definite bilinear form that is invariant under the action of U(n). Let G denote either U(2) or U(3). We
define the bilinear form by
gðmÞa1 ;a2
� PðmÞa1

ðzÞ; PðmÞa2
ðzÞ

� �
:

We require gðmÞa1 ;a2
to be invariant under the action of G, i.e.,
UPðmÞa1
ðzÞ;UPðmÞa2

ðzÞ
� �

¼ PðmÞa1
ðzÞ; PðmÞa2

ðzÞ
� �

;

where U 2 G. Here, U has to be embedded in Spð4;RÞ or Spð6;RÞ, as the case may be before it can act on PðmÞa ðzÞ [26].
The standard way of constructing an invariant metric is to use the invariant integral from group theory, as explained by

Cornwell in [4]. For a Lie group, it is defined as
I ¼
Z
G

hðUÞrðUÞdU;
where U 2 G;hðUÞ is a function defined on G and r(U) is the Haar measure for the Lie group G. In our case of study, the matrix
U is taken as mentioned in the last section. Since we are interested in symmetric positive definite invariant bilinear forms on
the space of homogenous polynomials of degree m, it is natural to take
hðUÞ ¼ ½Dm�TðUÞDmðUÞ;
where Dm is a square matrix of order N(2n,m) defined by
UPm
a ðzÞ ¼ Pm

a ðUzÞ ¼
XNð2n;mÞ

i¼1

DmðUÞiaPm
i ðzÞ;
and ½Dm�T is the transpose of Dm. An elementary result in matrix theory shows that ½Dm�TðUÞDmðUÞ is both symmetric and
positive definite. Hence, we have an invariant metric on the space of homogenous polynomials of degree m given by
gðmÞi;j ¼ PðmÞi ; PðmÞj

� �
¼
Z
G

ð½Dm�TðUÞDmðUÞÞijrðUÞdU: ð2Þ
With all the ingredients available, what remains is explicitly evaluating the invariant metric gðmÞij given by the Eq. (2) for var-
ious values of n (the number of degrees of freedom) and m (the degree of the homogenous polynomials). These expressions
are given below for a few values of m and n.

1. For n = 2 and m = 2, the matrix g(m) is a 10 � 10 matrix, whose diagonal entries are given by
gi;i ¼
3
2 for i ¼ 1;5;8;10;
8
3 otherwise;

(

while the non-zero non-diagonal entries are given by
gi;j ¼
1
6

for i; j ¼ 1;5;8;10:
2. For n = 2 and m = 3, the matrix g(m) is a 20 � 20 matrix, whose diagonal elements are given by
gi;i ¼

25
24 for i ¼ 1;11;17;20;
9
2 for i ¼ 6;7;9;15;
61
24 otherwise;

8><>:
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while the non-zero non-diagonal entries are given by
gi;j ¼
7

24
for

i; j ¼ 1;5;8;10;

i; j ¼ 2;11;14;16;

i; j ¼ 3;12;17;19;

i; j ¼ 4;13;18;20:

8>>><>>>:

3. For n = 3 and m = 2, the matrix g(m) is a 21 � 21 matrix, whose diagonal elements are given by
gi;i ¼
11
8 for i ¼ 1;7;12;16;19;21;

5
2 otherwise;

(

while the non-zero non-diagonal entries are given by
gi;j ¼
1
8

for i; j ¼ 1;7;12;16;19;21:
4. For n = 3 and m = 3, the matrix g(m) is a 56 � 56 matrix, whose diagonal elements are given by
gi;i ¼

5
6 for i ¼ 1;22;37;47;53;56;
21
10 for i ¼ 2;3;4;5;6;7;12;16;19;21;23;24;25;26;27;31;34;36;38;39;40;41;44;46;48;49;50;52;54;55;
19
5 otherwise;

8><>:

while the non-zero non-diagonal entries are given by
gi;j ¼
1
5

for

i; j ¼ 1;7;12;16;19;21;

i; j ¼ 2;22;27;31;34;36;

i; j ¼ 3;23;37;41;44;46;

i; j ¼ 4;24;38;47;50;52;

i; j ¼ 5;25;39;48;53;55;

i; j ¼ 6;26;40;49;54;56:

8>>>>>>>><>>>>>>>>:

We now construct the invariant norm that quantifies the leading order nonlinearity making use of the metric g(m). As ex-

plained earlier, to ensure that U(n) is the appropriate symmetry group, we first transform the symplectic map into its normal
form and then write out the invariant norm for fm in the transformed phase space coordinates. Consider the following def-
inition of I(z):
IðzÞ ¼ f tr
m ðzÞ; f tr

m ðzÞ
� �1=2

;

where (�, �) is defined in Eq. (2). Using the expansion of f tr
m ðzÞ in terms of the basis monomials, we obtain
f tr
m ðzÞ; f tr

m ðzÞ
� �

¼
XNð2n;mÞ

i¼1

biP
ðmÞ
i ðzÞ;

XNð2n;mÞ

j¼1

bjP
ðmÞ
j ðzÞ

 !
¼
XNð2n;mÞ

i¼1

XNð2n;mÞ

j¼1

bibj PðmÞi ðzÞ; P
ðmÞ
j ðzÞ

� �
¼
XNð2n;mÞ

i¼1

XNð2n;mÞ

j¼1

bibjg
ðmÞ
ij :
Since (�, �) defined in Eq. (2) is a symmetric positive definite, bilinear form invariant under the action of N, we have proved
the following theorem.

Theorem 3. The following definition of I(z) gives a norm that remains invariant under the action of U(n).
IðzÞ ¼
XNð2n;mÞ

i¼1

XNð2n;mÞ

j¼1

bibjg
ðmÞ
ij

 !1=2

:

Notice that I(z) is a function of the coefficients ba which in turn are related to the coefficients aa of the symplectic map M

(and hence the original Hamiltonian system). Hence I(z) is a function of the parameters s that we wish to optimize.

When I(z) is a polynomial of degree 3, it quantifies the leading nonlinearity of the system. Therefore, one can attempt
to vary one of the parameters describing the original system and minimize the norm I(z) which serves as a ‘‘merit func-
tion”. Once such a merit function is available for the Hamiltonian system, there already exists several papers [21–
23,28,29] which provide extensive details regarding how to optimize the ‘‘performance” of a given system. Needless
to say, the implementation requires a detailed knowledge about the system of interest so that it can be modeled by
an appropriate Hamiltonian.

The norm can also be used to quantify the ‘‘closeness” of two nonlinear symplectic maps. Since the metric was defined to
be invariant only under the action of the compact part of Spð2n;RÞ, it (and consequently, the norm) still has some
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dependence on the linear part of the map. Therefore, it is meaningful only to compare maps that have the same linear part M.
Let the two maps be defined as follows:
M ¼ bMeLf3 eLf4 � � � eLfn � � � ;

M0 ¼ bMe
Lf 0

3 e
Lf 0

4 � � � eLf 0n � � �
Then the ‘‘distance” dðM;M0Þ between the two maps M and M0 (when restricted to degree 3) can be defined as follows
dðM;M0Þ ¼ kf3 � f 03k:
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