Nonlinear Hyperbolic Waves in Multi-dimensions

Phoolan Prasad

Contents

Chapter 1

1 An introduction to nonlinear hyperbolic waves 1
1.1 A wave equation with genuine nonlinearity 1
1.2 Breakdown of a genuine solution 4
1.3 Conservation law and jump condition 7
1.4 Stability consideration, entropy condition and shocks 10
1.5 Some examples 16
1.6 Shock structure, dissipation and entropy condition 26
1.7 The persistence of a shock 33
1.8 Nonlinear wavefront and shock front 36
1.9 Hopf’s result on the general solution 39
1.10 Equal area rule for shock fitting 41

Chapter 2

2 Hyperbolic system - some basic results 47
2.1 Hyperbolic system of first order equations in two independent variables 47
2.1.1 Definition of a hyperbolic system 47
2.1.2 A canonical form of a system of linear and semilinear equations 50
2.2 The wave equation in \(m(>1) \) space dimensions 53
2.2.1 Space-like surface and time-like direction 54
2.2.2 Bicharacteristics and rays 56
2.2.3 Compatibility condition on a characteristic surface 58
2.2.4 Propagation of discontinuities in second order derivatives along rays

2.3 Hyperbolic system in more than two independent variables

2.3.1 Space-like surface and time-like direction

2.3.2 Explicit definition of a hyperbolic system

2.4 Bicharacteristic curves, rays and compatibility condition

2.5 Propagation of discontinuities of first order derivatives along rays

Chapter 3

3 Simple wave, high frequency approximation and ray theory

3.1 Simple wave

3.1.1 Example of a simple wave in gas dynamics

3.1.2 Simple wave in one space dimension

3.1.3 Simple wave in multi-dimensions

3.1.4 An initial value problem leading to a kth simple wave

3.2 High-frequency approximation, wavefront, Huygens’ method and Fermat’s principle

3.2.1 Definition of a wavefront

3.2.2 Huygens’ method of wavefront construction

3.2.3 Huygens’ method and ray theory

3.2.4 Fermat’s principle

3.2.5 Fermat’s principle in a stationary medium

3.2.6 Fermat’s principle in a nonstationary medium

3.2.7 Weakly nonlinear ray theory (WNLRT) in an isotropic medium using Fermat’s principle

3.3 Kinematics of a propagating curve

3.3.1 Caustic, wavefront folding and some other general properties

3.3.2 Ray coordinate system and kinematical conservation laws

3.3.3 Two types of singularities and jump conditions across a kink
3.3.4 Kinematical compatibility conditions on a surface of discontinuity in multi-dimensions

3.4 Breakdown of the continuity of a solution of a quasilinear system

3.4.1 Combined effect of genuine nonlinearity and geometrical divergence

3.4.2 Transport equation for discontinuities in derivatives for a system in multi-dimensions

3.5 Jump conditions on a curved shock

Chapter 4

4 Weakly nonlinear ray theory (WNLRT): derivation

4.1 A historical account

4.2 Derivation of CPW theory

4.3 A geometric derivation of WNLRT

4.3.1 WNLRT for a hyperbolic system

4.3.2 Upstream propagating waves in a steady flow of a polytropic gas

4.4 An asymptotic derivation of WNLRT

4.4.1 Derivation of eikonal and transport equations

4.4.2 Ray formulation of the asymptotic equations

4.4.3 Comparison with other theories

Chapter 5

5 Stability of solutions near a singularity of sonic type

5.1 Introduction

5.2 One-dimensional weakly nonlinear wave propagation

5.2.1 BKPS theory

5.2.2 Sonic type of singularity in self-similar solutions

5.3 Waves in a multi-dimensional steady transonic flow
Chapter 6
WNLRT in a polytropic gas

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Basic equations</td>
<td>205</td>
</tr>
<tr>
<td>6.1.1 Non-dimensional form of equations of WNLRT in two-space-dimensions</td>
<td>207</td>
</tr>
<tr>
<td>6.1.2 A simple wave solution</td>
<td>211</td>
</tr>
<tr>
<td>6.2 Geometrical features of a nonlinear wavefront</td>
<td>213</td>
</tr>
<tr>
<td>6.2.1 Elementary wave solutions and their interpretation as elementary shapes</td>
<td>214</td>
</tr>
<tr>
<td>6.2.2 Solution of the Riemann problem and interpretation</td>
<td>217</td>
</tr>
<tr>
<td>6.2.3 Interaction of elementary shapes</td>
<td>220</td>
</tr>
<tr>
<td>6.3 Exact solution of an initial value problem</td>
<td>222</td>
</tr>
<tr>
<td>6.4 Conclusion and validity of WNLRT</td>
<td>226</td>
</tr>
</tbody>
</table>

Chapter 7
Compatibility conditions on a shock: single conservation law

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Derivation of the infinite system of compatibility conditions</td>
<td>229</td>
</tr>
<tr>
<td>7.2 Existence and uniqueness of the solution of the infinite system</td>
<td>233</td>
</tr>
<tr>
<td>7.3 A new theory of shock dynamics: analytic considerations</td>
<td>236</td>
</tr>
<tr>
<td>7.4 A new theory of shock dynamics: comparison of numerical results with the exact solution</td>
<td>239</td>
</tr>
<tr>
<td>7.5 Conclusion</td>
<td>245</td>
</tr>
</tbody>
</table>

Chapter 8
One-dimensional piston problem: an application of NTSD

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Formulation of the problem</td>
<td>248</td>
</tr>
<tr>
<td>8.2 Dynamical compatibility conditions</td>
<td>249</td>
</tr>
<tr>
<td>8.3 Initial conditions for the piston problem</td>
<td>255</td>
</tr>
<tr>
<td>8.4 Results and discussions</td>
<td>257</td>
</tr>
</tbody>
</table>
Chapter 9

9. **Compatibility conditions on a shock manifold in multi-dimensions**
9.1 Shock rays
9.2 Shock manifold equation for a weak shock
9.3 Geometrical and kinematical compatibility conditions
9.3.1 Preliminary geometrical ideas for a moving curve in two-space-dimensions
9.3.2 Geometrical compatibility conditions
9.3.3 Some results in a ray coordinate system
9.3.4 Kinematical compatibility conditions
9.4 Dynamical compatibility conditions
9.4.1 The first set of dynamical compatibility conditions
9.4.2 The second set of dynamical compatibility conditions
9.4.3 First and second set of equations in the shock ray theory
9.5 A weak shock ray theory

Chapter 10

10. **Propagation of a curved weak shock**
10.1 Governing equations of the NTSD
10.2 Conservation form of the equations for a two-dimensional shock propagation
10.3 Initial conditions, results and discussion
10.3.1 Propagation of a shock front initially parabolic in shape
10.3.2 Propagation of a shock front with initially sinusoidal shape and periodic amplitude distribution
10.3.3 Propagation of shock front with initially asymmetric but piecewise parabolic shape in each period
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.4</td>
<td>Propagation of a shock front with initially periodic but arbitrary shape in each period</td>
<td>310</td>
</tr>
<tr>
<td>10.3.5</td>
<td>When the initial shock front has a single smooth dent or bulge</td>
<td>311</td>
</tr>
<tr>
<td>10.4</td>
<td>Comparison with other theories</td>
<td>315</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Qualitative verification of the shape of the front obtained by DNS to support the kink theory</td>
<td>315</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Comparison with earlier theories</td>
<td>315</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Comparison with weakly nonlinear ray theory</td>
<td>318</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Comparison with Whitham’s theory</td>
<td>319</td>
</tr>
<tr>
<td>10.5</td>
<td>Corrugational stability and persistence of a kink</td>
<td>322</td>
</tr>
</tbody>
</table>

References 325
Index 337