An Introduction to Representation Theory of Finite Groups

Pooja Singla

Ben-Gurion University of the Negev
Be'er Sheva
Israel

February 28, 2011
The groups discussed were mainly

- Symmetric groups
- $\mathbb{Z}/n\mathbb{Z}$ and $(\mathbb{Z}/n\mathbb{Z})^*$
- $GL_n(\mathbb{C})$

Cayley (1894) gave definition of abstract group

(Definition) A set G is called group if there exists an operation $\ast : G \times G \to G$ such that

1. \ast is associative.
2. There exists an element $1 \in G$ such that $1a = a1 = a$ for all $a \in G$.
3. For every $a \in G$ there exists a unique $b \in G$ such that $ab = ba = 1$.
Simple Groups - Group having no proper normal subgroups.

Question

What are all the finite simple groups?

To answer this question various tools were discussed and **Representation theory of finite groups** is one of these.

Other motivation of representation theory comes from the study of group actions.
Basic Definitions

G - Always finite group.

Definition

A representation of G is a homomorphism from G to the set of automorphisms of a finite dimensional complex vector space V, i.e.

$$\phi: G \rightarrow GL(V)$$

$$\phi(g_1 g_2) = \phi(g_1) \phi(g_2).$$
Basic Definitions

G - Always finite group.

Definition

A representation of G is a homomorphism from G to the set of automorphisms of a finite dimensional **complex** vector space V, i.e.

$$
\phi: G \mapsto \text{GL}(V)
$$

$$
\phi(g_1g_2) = \phi(g_1)\phi(g_2).
$$

- V is called a representation space for ϕ.
Basic Definitions

G - Always finite group.

Definition

A representation of G is a homomorphism from G to the set of automorphisms of a finite dimensional complex vector space V, i.e.

$$\phi: G \mapsto \text{GL}(V)$$

$$\phi(g_1g_2) = \phi(g_1)\phi(g_2).$$

- V is called a representation space for ϕ.
- For a fixed choice of basis $\text{GL}(V) \cong \text{GL}_n(\mathbb{C})$.
Basic Definitions

G - Always finite group.

Definition

A representation of G is a homomorphism from G to the set of automorphisms of a finite dimensional complex vector space V, i.e.

$$\phi: G \rightarrow GL(V)$$

$$\phi(g_1 g_2) = \phi(g_1) \phi(g_2).$$

- V is called a representation space for ϕ.
- For a fixed choice of basis $GL(V) \cong GL_n(\mathbb{C})$.
- Dimension of $\phi := $ dimension of V.
Basic Definitions

G - Always finite group.

Definition

A representation of G is a homomorphism from G to the set of automorphisms of a finite dimensional **complex** vector space V, i.e.

$$\phi: G \rightarrow \text{GL}(V)$$

$$\phi(g_1g_2) = \phi(g_1)\phi(g_2).$$

- V is called a representation space for ϕ.
- For a fixed choice of basis $\text{GL}(V) \cong \text{GL}_n(\mathbb{C})$.
- dimension of $\phi :=$ dimension of V.
- **Notation:** (ϕ, V) or ϕ or V.
Basic Definitions

G - Always finite group.

Definition

A representation of G is a homomorphism from G to the set of automorphisms of a finite dimensional **complex** vector space V, i.e.

$$\phi: G \ni g \mapsto \phi(g) \in \text{GL}(V)$$

$$\phi(g_1g_2) = \phi(g_1)\phi(g_2).$$

- V is called a representation space for ϕ.
- For a fixed choice of basis $\text{GL}(V) \cong \text{GL}_n(\mathbb{C})$.
- dimension of $\phi := \text{dimension of } V$.
- **Notation:** (ϕ, V) or ϕ or V.
- **Note:** For all $g \in G$, $\phi(g)V = V$.

Pooja Singla (BGU)
Examples:

1. For any group G, the map $\phi : G \rightarrow \mathbb{C}^*$, given by $\phi(g) = 1$ for all g. $\dim(\phi) = 1$.

2. Let C_n be a cyclic group with n elements. Let $\phi : C_n \rightarrow \mathbb{C}^*$ be a homomorphism, then $\phi(x)^n = 1$ for all $x \in C_n$.

3. Let ω be a generator of C_n and ζ_n be the nth primitive root of 1. Then ϕ is completely determined by $\phi(\omega)$.

4. Let $\phi(\omega) = \zeta_i^n$ then we denote ϕ by ϕ_i.

Examples:

- For any group G, the map $\phi : G \to \mathbb{C}^*$, given by $\phi(g) = 1$ for all g. $\dim(\phi) = 1$.

- Let C_n - Cyclic group with n elements. Let $\phi : C_n \to \mathbb{C}^*$ a homomorphism, then

 $$\phi(x)^n = 1 \text{ for all } x \in C_n.$$

 Let ω be a generator of C_n and ζ_n be n-th primitive root of 1. Then ϕ is completely determined by $\phi(\omega)$.
Examples:

- For any group \(G \), the map \(\phi : G \to \mathbb{C}^* \), given by \(\phi(g) = 1 \) for all \(g \).
 \(\dim(\phi) = 1 \).

- Let \(C_n \) - Cyclic group with \(n \) elements. Let \(\phi : C_n \to \mathbb{C}^* \) a homomorphism, then
 \[\phi(x)^n = 1 \] for all \(x \in C_n \).

Let \(\omega \) be a generator of \(C_n \) and \(\zeta_n \) be \(n \) \(-th\) primitive root of 1. Then \(\phi \) is completely determined by \(\phi(\omega) \).
Let \(\phi(\omega) = \zeta_n^i \) then we denote \(\phi \) by \(\phi_i \).
Examples

- Let S_3 - permutations of \{1, 2, 3\}. Define $\phi : S_3 \rightarrow \text{GL}_3(\mathbb{C})$ by

 \[
 (1) \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},
 (12) \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},
 (13) \rightarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix},
 (23) \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},
 (123) \rightarrow \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},
 (132) \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.

\]

- $\dim(\phi) = 3$.

Examples

- (Permutation Representation) Suppose G acts on finite set X, that is for each $s \in G$, there is given a permutation $x \mapsto sx$ of X satisfying

$$1x = x, s(tx) = (st)x, \quad s, t \in G, x \in X.$$
(Permutation Representation) Suppose G acts on finite set X, that is for each $s \in G$, there is given a permutation $x \mapsto sx$ of X satisfying

$$1x = x, s(tx) = (st)x, \quad s, t \in G, x \in X.$$

Let V be complex vector space with basis $(e_x)_{x \in X}$. For $s \in G$, let

$$\rho : G \rightarrow \text{GL}(V);$$

$$\rho(s) : e_x \mapsto e_{sx}.$$

$$\dim(\rho) = |X|.$$
Examples

- (Permutation Representation) Suppose G acts on finite set X, that is for each $s \in G$, there is given a permutation $x \mapsto sx$ of X satisfying

$$1x = x, s(tx) = (st)x, \quad s, t \in G, x \in X.$$

Let V be complex vector space with basis $(e_x)_{x \in X}$. For $s \in G$, let

$$\rho : G \to \text{GL}(V);$$

$$\rho(s) : e_x \mapsto e_{sx}.$$

$$\dim(\rho) = |X|.$$

- (Regular Representation) If V is space with basis $(e_g)_{g \in G}$, then above action is called regular representation of G.

Question

What are all the complex representations of a finite group G?
Definition

\textit{(G-invariant Space)} A space \(V \) is called \(G \)-invariant if there exists \(\phi : G \rightarrow \text{Aut}(V) \) such that

\[\phi(g)V = V \quad \text{for all} \quad g \in G. \]
Definition

(G-invariant Space) A space V is called G-invariant if there exists $\phi : G \to \text{Aut}(V)$ such that

$$\phi(g)V = V \quad \text{for all} \quad g \in G.$$

- G-invariant \leftrightarrow G-representation
(G-invariant Space) A space V is called G-invariant if there exists $\phi : G \to \text{Aut}(V)$ such that

$$\phi(g)V = V \quad \text{for all} \quad g \in G.$$
Definition

(G-invariant Space) A space V is called G-invariant if there exists
$\phi : G \rightarrow \text{Aut}(V)$ such that

$$\phi(g)V = V \quad \text{for all} \quad g \in G.$$

- G-invariant \leftrightarrow G-representation
- (Subrepresentation) Any G invariant subspace of V is called subrepresentation.
- (Irreducible Representation) A representation is called irreducible if it has no proper subrepresentations.
Tools

Definition

(G-invariant Space) A space V is called G-invariant if there exists $\phi : G \to \text{Aut}(V)$ such that

$$\phi(g)V = V \quad \text{for all} \quad g \in G.$$

- G-invariant \iff G-representation
- (Subrepresentation) Any G invariant subspace of V is called subrepresentation.
- (Irreducible Representation) A representation is called irreducible if it has no proper subrepresentations.
- One dimensional representations are irreducible.
Tools

Definition

Two representations \((\phi_1, V_1)\) and \((\phi_2, V_2)\) are said to be equivalent if there exists an isomorphism \(T : V_1 \leftrightarrow V_2\) such that \(\phi_2(g)T = T\phi_1(g)\) for all \(g \in G\).
Definition

Two representations \((\phi_1, V_1)\) and \((\phi_2, V_2)\) are said to be equivalent if there exists an isomorphism \(T : V_1 \rightarrow V_2\) such that \(\phi_2(g)T = T\phi_1(g)\) for all \(g \in G\).

\[
\begin{array}{c}
V_1 \xrightarrow{\phi_1(g)} V_1 \\
\downarrow T \quad \downarrow T \\
V_2 \xrightarrow{\phi_2(g)} V_2
\end{array}
\]
Definition

Two representations \((\phi_1, V_1)\) and \((\phi_2, V_2)\) are said to be equivalent if there exists an isomorphism \(T : V_1 \rightarrow V_2\) such that \(\phi_2(g)T = T\phi_1(g)\) for all \(g \in G\).

\[
\begin{array}{ccc}
V_1 & \xrightarrow{\phi_1(g)} & V_1 \\
\downarrow T & & \downarrow T \\
V_2 & \xrightarrow{\phi_2(g)} & V_2 \\
\end{array}
\]

- In matrix notations: If \(\dim(V_1) = \dim(V_2) = n\). Then \((\phi_1, V_1) \cong (\phi_2, V_2)\), if there exists \(X \in \text{GL}_n(\mathbb{C})\) such that

\[
X\phi_1(g)X^{-1} = \phi_2(g).
\]
Examples

Consider $\phi_1 : S_2 \rightarrow GL_2(\mathbb{C})$ by

$$(1) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, (12) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

and $\phi_2 : S_2 \rightarrow GL_2(\mathbb{C})$ by

$$(1) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, (12) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$
Examples

Consider $\phi_1 : S_2 \rightarrow \text{GL}_2(\mathbb{C})$ by

$$(1) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad (12) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

and $\phi_2 : S_2 \rightarrow \text{GL}_2(\mathbb{C})$ by

$$(1) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad (12) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Claim: $\phi_1 \cong \phi_2$.
Examples

Consider $\phi_1 : S_2 \to \text{GL}_2(\mathbb{C})$ by

$$(1) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, (12) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

and $\phi_2 : S_2 \to \text{GL}_2(\mathbb{C})$ by

$$(1) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, (12) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Claim: $\phi_1 \cong \phi_2$.

Examples

Consider $\phi_1 : S_2 \to GL_2(\mathbb{C})$ by

$$(1) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, (12) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

and $\phi_2 : S_2 \to GL_2(\mathbb{C})$ by

$$(1) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, (12) \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Claim: $\phi_1 \cong \phi_2$.

Take $X = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, then

$$X \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} X^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$
Examples

- Consider one dimensional representations ϕ_i and ϕ_j of cyclic group C_n given by

$$
\phi_i(\omega) = \zeta_n^i, \quad \phi_j(\omega) = \zeta_n^j
$$

where ω is generator of C_n.

Claim: For $i \neq j$, $\phi_i \not\sim \phi_j$.

Proof: If $f: C \to C$ is an isomorphism then $f(x) = \lambda x$ for some $\lambda \in C^\times$.

$C^\times \downarrow \downarrow \zeta_n^i \to \to C^\times \downarrow \downarrow \zeta_n^j \to \to C$ implies $\lambda \zeta_n^i = \zeta_n^j \lambda$, which is not true.
Examples

- Consider one dimensional representations \(\phi_i \) and \(\phi_j \) of cyclic group \(C_n \) given by
 \[
 \phi_i(\omega) = \zeta_n^i, \quad \phi_j(\omega) = \zeta_n^j
 \]
 where \(\omega \) is generator of \(C_n \).

- **Claim:** For \(i \neq j \), \(\phi_i \not\cong \phi_j \).
Examples

Consider one dimensional representations ϕ_i and ϕ_j of cyclic group C_n given by

$$\phi_i(\omega) = \zeta_n^i, \quad \phi_j(\omega) = \zeta_n^j$$

where ω is generator of C_n.

Claim: For $i \neq j$, $\phi_i \not\cong \phi_j$.

Proof: If $f : \mathbb{C} \to \mathbb{C}$ is an isomorphism then $f(x) = \lambda x$ for some $\lambda \in \mathbb{C}^*$.

\[
\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\zeta_n^i} & \mathbb{C} \\
\downarrow{\lambda} & & \downarrow{\lambda} \\
\mathbb{C} & \xrightarrow{\zeta_n^j} & \mathbb{C}
\end{array}
\]

$\phi_i \cong \phi_j$ implies $\lambda \zeta_n^i = \zeta_n^j \lambda$, which is not true.
Definition

\((G\text{-linear map})\) Let \((\phi_1, V_1)\) and \((\phi_2, V_2)\) be two representations of finite group \(G\). Then a map \(T: V_1 \rightarrow V_2\) is called \(G\)-linear if

\begin{enumerate}
\item \(T\) is \(\mathbb{C}\)-linear.
\item \(T \circ \phi_1(g) = \phi_2(g) \circ T\).
\end{enumerate}
Definition

\((G\text{-linear map}) \) Let \((\phi_1, V_1)\) and \((\phi_2, V_2)\) be two representations of finite group \(G\). Then a map \(T : V_1 \rightarrow V_2\) is called \(G\)-linear if

1. \(T\) is \(\mathbb{C}\)-linear.
2. \(T \circ \phi_1(g) = \phi_2(g) \circ T\).

Lemma

The kernel and image of \(G\)-linear map are \(G\)-invariant subspaces.
(G-linear map) Let (ϕ_1, V_1) and (ϕ_2, V_2) be two representations of finite group G. Then a map $T : V_1 \rightarrow V_2$ is called G-linear if

1. T is \mathbb{C}-linear.
2. $T \circ \phi_1(g) = \phi_2(g) \circ T$.

Lemma

The kernel and image of G-linear map are G-invariant subspaces.

Proof:

- Let $W_1 \subset V_1$ be the kernel of T.

Definition

(G-linear map) Let \((\phi_1, V_1)\) and \((\phi_2, V_2)\) be two representations of finite group \(G\). Then a map \(T : V_1 \rightarrow V_2\) is called \(G\)-linear if

1. \(T\) is \(\mathbb{C}\)-linear.
2. \(T \circ \phi_1(g) = \phi_2(g) \circ T\).

Lemma

The kernel and image of \(G\)-linear map are \(G\)-invariant subspaces.

Proof:

- Let \(W_1 \subset V_1\) be the kernel of \(T\).
- Take \(v \in W_1\), we prove \(\phi_1(g)v \in W_1\) for all \(g \in G\).
Definition

(G-linear map) Let \((\phi_1, V_1)\) and \((\phi_2, V_2)\) be two representations of finite group \(G\). Then a map \(T : V_1 \to V_2\) is called \(G\)-linear if

1. \(T\) is \(\mathbb{C}\)-linear.
2. \(T \circ \phi_1(g) = \phi_2(g) \circ T\).

Lemma

The kernel and image of \(G\)-linear map are \(G\)-invariant subspaces.

Proof:

- Let \(W_1 \subset V_1\) be the kernel of \(T\).
- Take \(v \in W_1\), we prove \(\phi_1(g)v \in W_1\) for all \(g \in G\).
- \(T(\phi_1(g)v) = \phi_2(g)(T(v)) = 0\).
Definition

(G-linear map) Let \((\phi_1, V_1)\) and \((\phi_2, V_2)\) be two representations of finite group \(G\). Then a map \(T : V_1 \rightarrow V_2\) is called \(G\)-linear if

1. \(T\) is \(\mathbb{C}\)-linear.
2. \(T \circ \phi_1(g) = \phi_2(g) \circ T\).

Lemma

The kernel and image of \(G\)-linear map are \(G\)-invariant subspaces.

Proof:

- Let \(W_1 \subset V_1\) be the kernel of \(T\).
- Take \(v \in W_1\), we prove \(\phi_1(g)v \in W_1\) for all \(g \in G\).
- \(T(\phi_1(g)v) = \phi_2(g)(T(v)) = 0\).
- \(\phi_1(g)v \in W_1\).
Definition

(G-linear map) Let \((\phi_1, V_1)\) and \((\phi_2, V_2)\) be two representations of finite group \(G\). Then a map \(T : V_1 \to V_2\) is called \(G\)-linear if

1. \(T\) is \(\mathbb{C}\)-linear.
2. \(T \circ \phi_1(g) = \phi_2(g) \circ T\).

Lemma

The kernel and image of \(G\)-linear map are \(G\)-invariant subspaces.

Proof:

- Let \(W_1 \subset V_1\) be the kernel of \(T\).
- Take \(v \in W_1\), we prove \(\phi_1(g)v \in W_1\) for all \(g \in G\).
- \(T(\phi_1(g)v) = \phi_2(g)(T(v)) = 0\).
- \(\phi_1(g)v \in W_1\).
- Similar argument for the image.
(Direct Sum of Representations) If \((\phi, V)\) and \((\psi, W)\) be two representations of group \(G\), then \((\phi \oplus \psi, V \oplus W)\) given by

\[
[(\phi \oplus \psi)(g)](v, w) = (\phi(g)v, \psi(g)w)
\]

is a representation of \(G\).
More Tools

Definition

(Direct Sum of Representations) If \((\phi, V)\) and \((\psi, W)\) be two representations of group \(G\), then \((\phi \oplus \psi, V \oplus W)\) given by

\[
[(\phi \oplus \psi)(g)](v, w) = (\phi(g)v, \psi(g)w)
\]

is a representation of \(G\).

- Observe \(\dim(\phi \oplus \psi) = \dim(\phi) + \dim(\psi)\).
Definition

(Direct Sum of Representations) If \((\phi, V)\) and \((\psi, W)\) be two representations of group \(G\), then \((\phi \oplus \psi, V \oplus W)\) given by

\[
[(\phi \oplus \psi)(g)](v, w) = (\phi(g)v, \psi(g)w)
\]

is a representation of \(G\).

- Observe \(\dim(\phi \oplus \psi) = \dim(\phi) + \dim(\psi)\).
- In terms of matrices

\[
(\phi \oplus \psi)(g) = \begin{bmatrix} \phi(g) & 0 \\ 0 & \psi(g) \end{bmatrix}
\]
Definition

(Direct Sum of Representations) If \((\phi, V)\) and \((\psi, W)\) be two representations of group \(G\), then \((\phi \oplus \psi, V \oplus W)\) given by

\[
[(\phi \oplus \psi)(g)](v, w) = (\phi(g)v, \psi(g)w)
\]

is a representation of \(G\).

- Observe \(\dim(\phi \oplus \psi) = \dim(\phi) + \dim(\psi)\).
- In terms of matrices

\[
(\phi \oplus \psi)(g) = \begin{bmatrix}
\phi(g) & 0 \\
0 & \psi(g)
\end{bmatrix}
\]
Proposition

Let \((\phi, V)\) be a complex representation of finite group \(G\). The following are equivalent:

1. \((\phi, V)\) is irreducible.
2. \((\phi, V)\) can not be written as direct sum of two proper subrepresentations.

Proof:

Let \(W\) be a \(G\)-invariant subspace of \(V\). For proof we show that there is a complimentary invariant subspace \(W'\) such that \(V = W \oplus W'\). Let \(U\) be an arbitrary complement of \(W\) in \(V\), let \(\pi_0: V \rightarrow W\) be the projection given by the direct sum decomposition \(V = W \oplus U\).
Proposition

Let \((\phi, V)\) be a complex representation of finite group \(G\). The following are equivalent:

1. \((\phi, V)\) is irreducible.
2. \((\phi, V)\) can not be written as direct sum of two proper subrepresentations.

Proof: Let \(W\) be a \(G\)-invariant subspace of \(V\). For proof we show that there is a complimentary invariant subspace \(W'\) such that

\[V = W \oplus W'. \]

Let \(U\) be an arbitrary complement of \(W\) in \(V\), let

\[\pi_0 : V \to W \]

be the projection given by the direct sum decomposition \(V = W \oplus U\).
Average the map π_0 over G, that is an onto map $\pi : V \rightarrow W$ by,

$$\pi(v) = \frac{1}{|G|} \sum_{g \in G} \phi(g)(\pi_0(\phi(g)^{-1}v)).$$

Then π is a G-linear. Therefore its kernel is the required G-invariant complement of W.
Theorem

Every complex representation of finite group G is direct sum of irreducible representations.
Theorem

Every complex representation of finite group G is direct sum of irreducible representations.

Proof: (For cyclic group case) Let $\phi : C_n \rightarrow GL_m(\mathbb{C})$ - homomorphism.

Step 1. Every finite order complex matrix is diagonalizable.

Step 2. The matrices $\phi(x)$ are pairwise commuting and diagonalizable, hence are simultaneously diagonalizable. Therefore ϕ is easily seen to be direct sum of one dimensional representations. That is $\phi = \bigoplus_{i} \phi \oplus m_i$ where m_i is the multiplicity.

General Proof

Decompose V into irreducible representation by using last proposition.
Theorem

Every complex representation of finite group G is direct sum of irreducible representations.

Proof: (For cyclic group case) Let $\phi : C_n \rightarrow \text{GL}_m(\mathbb{C})$- homomorphism.

Step 1. Every finite order complex matrix is diagonalizable.
Theorem

Every complex representation of finite group G is direct sum of irreducible representations.

Proof: (For cyclic group case) Let $\phi : C_n \rightarrow \text{GL}_m(\mathbb{C})$- homomorphism.

Step 1. Every finite order complex matrix is diagonalizable.

Step 2. The matrices $\phi(x)$ are pairwise commuting and diagonalizable, hence are simultaneously diagonalizable. Therefore ϕ is easily seen to be direct sum of one dimensional representations. That is

$$\phi = \bigoplus_i \phi_i^{\oplus m_i}$$

where m_i is the multiplicity.
Theorem

Every complex representation of finite group G is direct sum of irreducible representations.

Proof: (For cyclic group case) Let $\phi : C_n \to \text{GL}_m(\mathbb{C})$- homomorphism.

Step 1. Every finite order complex matrix is diagonalizable.

Step 2. The matrices $\phi(x)$ are pairwise commuting and diagonalizable, hence are simultaneously diagonalizable. Therefore ϕ is easily seen to be direct sum of one dimensional representations. That is

$$\phi = \bigoplus_i \phi_i^{\oplus m_i}$$

where m_i is the multiplicity.

- **General Proof** Decompose V into irreducible representation by using last proposition.
So the question is...

Question

What are all the finite dimensional inequivalent irreducible complex representations of a given finite group G?
So the question is...

Question

What are all the finite dimensional inequivalent irreducible complex representations of a given finite group G?

- Observe we have answered it already for cyclic groups.
Theorem

(Schur’s Lemma) Let $\phi_1 : G \to \text{GL}(V_1)$ and $\phi_2 : G \to \text{GL}(V_2)$ be two irreducible representations of G, and let T be a linear mapping of V_1 into V_2 such that $\phi_2(g) \circ T = T \circ \phi_1(g)$ for all $g \in G$. Then:

1. If ϕ_1 and ϕ_2 are not isomorphic, we have $T = 0$.
2. If $V_1 = V_2$ and $\phi_1 = \phi_2$, then $T(x) = \lambda x$ for $x \in V$ and for some scalar $\lambda \in \mathbb{C}$.

Proof:
Suppose $T \neq 0$. The G-linearity of T implies that both kernel and image of T are G-invariant subspaces.
Theorem

(Schur’s Lemma) Let $\phi_1 : G \to \text{GL}(V_1)$ and $\phi_2 : G \to \text{GL}(V_2)$ be two irreducible representations of G, and let T be a linear mapping of V_1 into V_2 such that $\phi_2(g) \circ T = T \circ \phi_1(g)$ for all $g \in G$. Then:

1. If ϕ_1 and ϕ_2 are not isomorphic, we have $T = 0$.
2. If $V_1 = V_2$ and $\phi_1 = \phi_2$, then $T(x) = \lambda x$ for $x \in V$ and for some scalar $\lambda \in \mathbb{C}$.

Proof:

Suppose $T \neq 0$. The G-linearity of T implies that both kernel and image of T are G-invariant subspaces.
More tools and Interesting Results

Theorem

(Schur’s Lemma) Let \(\phi_1 : G \to \text{GL}(V_1) \) and \(\phi_2 : G \to \text{GL}(V_2) \) be two irreducible representations of \(G \), and let \(T \) be a linear mapping of \(V_1 \) into \(V_2 \) such that \(\phi_2(g) \circ T = T \circ \phi_1(g) \) for all \(g \in G \). Then:

1. If \(\phi_1 \) and \(\phi_2 \) are not isomorphic, we have \(T = 0 \).
2. If \(V_1 = V_2 \) and \(\phi_1 = \phi_2 \), then \(T(x) = \lambda x \) for \(x \in V \) and for some scalar \(\lambda \in \mathbb{C} \).

Proof:

- Suppose \(T \neq 0 \). The \(G \)-linearity of \(T \) implies that both kernel and image of \(T \) are \(G \)-invariant subspaces.
More interesting tools...

- The irreducibility of ϕ_1 and ϕ_2 implies T is an isomorphism.
More interesting tools...

- The irreducibility of ϕ_1 and ϕ_2 implies T is an isomorphism.
- If $V_1 = V_2$, $\phi_1 = \phi_2$. Let λ be an eigenvalue of T (recall field is \mathbb{C}).
The irreducibility of \(\phi_1 \) and \(\phi_2 \) implies \(T \) is an isomorphism.

If \(V_1 = V_2 \), \(\phi_1 = \phi_2 \). Let \(\lambda \) be an eigenvalue of \(T \) (recall field is \(\mathbb{C} \)).

Put \(T' = T - \lambda \). Then \(\text{Ker}(T') \neq 0 \).
The irreducibility of \(\phi_1 \) and \(\phi_2 \) implies \(T \) is an isomorphism.

If \(V_1 = V_2 \), \(\phi_1 = \phi_2 \). Let \(\lambda \) be an eigenvalue of \(T \) (recall field is \(\mathbb{C} \)).

Put \(T' = T - \lambda \). Then \(\text{Ker}(T') \neq 0 \).

Also \(\phi_2(g) \circ T' = T' \circ \phi_1(g) \).
More interesting tools...

- The irreducibility of ϕ_1 and ϕ_2 implies T is an isomorphism.
- If $V_1 = V_2$, $\phi_1 = \phi_2$. Let λ be an eigenvalue of T (recall field is \mathbb{C}).
- Put $T' = T - \lambda$. Then $\text{Ker}(T') \neq 0$.
- Also $\phi_2(g) \circ T' = T' \circ \phi_1(g)$.
- By the first part, we must have $T' = 0$. That is $T = \lambda$.
More interesting tools...

- The irreducibility of ϕ_1 and ϕ_2 implies T is an isomorphism.
- If $V_1 = V_2$, $\phi_1 = \phi_2$. Let λ be an eigenvalue of T (recall field is \mathbb{C}).
- Put $T' = T - \lambda$. Then $\ker(T') \neq 0$.
- Also $\phi_2(g) \circ T' = T' \circ \phi_1(g)$.
- By the first part, we must have $T' = 0$. That is $T = \lambda$.

Theorem

The number of inequivalent irreducible representations of finite group is equal to the number of its conjugacy classes.
Theorem

If $\rho_1, \rho_2, \ldots, \rho_t$ are all the inequivalent irreducible representations of group G then

$$|G| = \sum_{i=1}^{t} \dim(\rho_i)^2.$$
More tools and Interesting Results

Theorem

If $\rho_1, \rho_2, \ldots, \rho_t$ *are all the inequivalent irreducible representations of group* G *then*

$$|G| = \sum_{i=1}^{t} \dim(\rho_i)^2.$$

Consider the group S_3.

- $|S_3| = 6$.
- S_3 has three conjugacy classes given by (1), (12), (123).
- Define $\sigma : S_3 \to \mathbb{C}^\ast$ by

 $$\sigma(1) = 1, \sigma(123) = \sigma(132) = 1,$$
 $$\sigma(12) = \sigma(23) = \sigma(13) = -1.$$
- σ and trivial representations are two one dimensional inequivalent irreducible representations of S_3 of dimension one.
- The only way to write 6 as sum of three squares is $6 = 1 + 1 + 2^2$.
- Recall that the permutation representation of S_3 which maps each permutation to corresponding permutation matrices.
- This is not direct sum of one dimensional representations.
- The only decomposition possible is $3 = 1 + 2$.
- So its decomposition with above observations will give all the irreducible representations of S_3.
Let S_3 - permutations of $\{1, 2, 3\}$. Define $\phi : S_3 \rightarrow \text{GL}_3(\mathbb{C})$ by

- $(1) \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $(12) \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- $(13) \rightarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $(23) \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
- $(123) \rightarrow \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, $(132) \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.

$\dim(\phi) = 3$.
Set \(G = \text{GL}_2(K) \), \(|K| = q\) where \(q = p^r \) for an odd prime \(p \).

Question

What are all the irreducible complex representations of \(G \)?

We shall construct a very special class of representations of these groups.
Remark

A representation of dimension one of G is simply a homomorphism ϕ of G to \mathbb{C}^*.

Let $G_0 = \{ xyx^{-1}y^{-1} | x, y \in G \}$ be the derived subgroup of G. Let $\pi: G \to G/G_0$ be the natural epimorphism.

Proposition (One dimensional representations of G) Let $\phi: G \to \mathbb{C}^*$ be a homomorphism. Then there exists a homomorphism $\bar{\phi}: G/G_0 \to \mathbb{C}^*$ such that $\bar{\phi}.\pi = \phi$. Conversely, any homomorphism from G/G_0 to \mathbb{C}^* produces a homomorphism from G to \mathbb{C}^* by composition with π.

Pooja Singla (BGU)
Representation Theory
February 28, 2011
25 / 37
Remark

A representation of dimension one of G is simply a homomorphism ϕ of G to \mathbb{C}^*.

- Let $G_0 = \{xyx^{-1}y^{-1} \mid x, y \in G\}$ be the derived subgroup of G.
- Let $\pi : G \to G/G_0$ be the natural epimorphism.

Proposition

(One dimensional representations of G) Let $\phi : G \to \mathbb{C}^*$ be a homomorphism.

- Then there exists a homomorphism $\bar{\phi} : G/G_0 \to \mathbb{C}^*$ such that $\bar{\phi}.\pi = \phi$.
- Conversely, any homomorphism from G/G_0 to \mathbb{C}^* produces a homomorphism from G to \mathbb{C}^* by composition with π.

Pooja Singla (BGU)
Representation Theory
February 28, 2011
Remark

A representation of dimension one of G is simply a homomorphism ϕ of G to \mathbb{C}^*.

- Let $G_0 = \{xyx^{-1}y^{-1} \mid x, y \in G\}$ be the derived subgroup of G.
- Let $\pi : G \to G/G_0$ be the natural epimorphism.

Proposition

(One dimensional representations of G) Let $\phi : G \to \mathbb{C}^*$ be a homomorphism.

- Then there exists a homomorphism $\bar{\phi} : G/G_0 \to \mathbb{C}^*$ such that $\bar{\phi}.\pi = \phi$.
- Conversely, any homomorphism from G/G_0 to \mathbb{C}^* produces a homomorphism from G to \mathbb{C}^* by composition with π.
Definition

(Induced Representations) Let H be a subgroup of a finite group G, and let (ψ, U) be a representation of H. Let

$$V = \{f : G \to U | f(hg) = \psi(h)f(g), h \in H, g \in G\}.$$

Then G acts on V by right translations; $\phi : G \to \text{Aut}(V)$ by

$$[\phi(g)(f)](g') = f(g'g) \quad g, g' \in G, f \in V.$$

It follows that (ϕ, V) is a representation of G. This is called induced representation of (ψ, U) from H to G, denoted by $\text{Ind}_H^G(\psi)$.

Definition

(Induced Representations) Let H be a subgroup of a finite group G, and let (ψ, U) be a representation of H. Let

$$V = \{f : G \rightarrow U | f(hg) = \psi(h)f(g), h \in H, g \in G\}.$$

Then G acts on V by right translations; $\phi : G \rightarrow \text{Aut}(V)$ by

$$[\phi(g)(f)](g') = f(g'g), \quad g, g' \in G, f \in V.$$

It follows that (ϕ, V) is a representation of G. This is called induced representation of (ψ, U) from H to G, denoted by $\text{Ind}_H^G(\psi)$.

- $\dim(\text{Ind}_H^G(\psi)) = |G/H| \cdot \dim(\psi)$.
Definition

(Induced Representations) Let H be a subgroup of a finite group G, and let (ψ, U) be a representation of H. Let

$$V = \{f : G \to U \mid f(hg) = \psi(h)f(g), h \in H, g \in G\}.$$

Then G acts on V by right translations; $\phi : G \to \text{Aut}(V)$ by

$$[\phi(g)(f)](g') = f(g'g) \quad g, g' \in G, f \in V.$$

It follows that (ϕ, V) is a representation of G. This is called induced representation of (ψ, U) from H to G, denoted by $\text{Ind}_H^G(\psi)$.

- $\dim(\text{Ind}_H^G(\psi)) = |G/H|.\dim(\psi)$.
- By restricting the action of ϕ on a subgroup H of G, we obtain a representation of H, denoted by $\text{Res}_H^G(\phi)$.
Set $G = \text{GL}_2(K)$, $|K| = q$ where $q = p^r$ for an odd prime p.

Question

What are all the irreducible complex representations of G?

- Let K^* be invertible elements of K.
- Recall K^* is a cyclic group of order $q - 1$.
- Let \hat{K}^* is the set of one dimensional representations of K^*.
- Let

$$B = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, c \in K^*, b \in K \}.$$

- Choose $\mu_1, \mu_2 \in \hat{K}^*$.
 Define

$$\mu : B \mapsto \mathbb{C}^*; \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto \mu_1(a) \mu_2(c).$$
Write

\[\mu = (\mu_1, \mu_2). \]
Write

\[\mu = (\mu_1, \mu_2). \]

Set

\[V_\mu = \{ f : G \to \mathbb{C} \mid f(bg) = \mu(b)f(g) \}. \]
Write

\[\mu = (\mu_1, \mu_2). \]

Set

\[V_\mu = \{ f : G \to \mathbb{C} \mid f(bg) = \mu(b)f(g) \}. \]

Now define an action of \(G \) on \(V_\mu \) by

\[(\hat{\mu}(g)f)(x) = f(xg), \quad \text{for all} \quad x, g \in G. \]

Dimension of \(\hat{\mu} = \frac{|G|}{|B|} = \frac{(q^2-1)(q^2-q)}{(q-1)^2q} = q + 1. \]
Write

$$\mu = (\mu_1, \mu_2).$$

Set

$$V_\mu = \{ f : G \rightarrow \mathbb{C} \mid f(bg) = \mu(b)f(g) \}.$$

Now define an action of G on V_μ by

$$(\hat{\mu}(g)f)(x) = f(xg), \quad \text{for all } x, g \in G.$$

Dimension of $\hat{\mu} = \frac{|G|}{|B|} = \frac{(q^2-1)(q^2-q)}{(q-1)^2q} = q + 1.$

Question

Is $\hat{\mu}$ irreducible?
Case 1. For $\mu_1 \neq \mu_2$, the G-representation $(\hat{\mu}, V_\mu)$ is irreducible. Furthermore,

$$\left(\mu_1, \mu_2\right) \cong \left(\mu'_1, \mu'_2\right)$$

if and only if either

$$\mu_1 = \mu'_1 \quad \text{and} \quad \mu_2 = \mu'_2$$

or

$$\mu_1 = \mu'_2 \quad \text{and} \quad \mu_2 = \mu'_1.$$

This gives $\frac{(q-1)(q-2)}{2}$ inequivalent $(q + 1)$ dimensional irreducible representations.
Case 2. For \(\mu_1 = \mu_2 \), the \(G \)-representation \((\hat{\mu}, V_\mu)\) is not irreducible. In this case

\[
\hat{\mu} = \phi_1 \oplus \phi_2,
\]

where \(\phi_1 \) is one dimensional and \(\phi_2 \) is \(q \) dimensional.

Suppose \(\hat{\mu} = \phi_1 \oplus \phi_2 \) and \(\hat{\nu} = \psi_1 \oplus \psi_2 \).

If \(\mu \not\equiv \nu \) then

\[
\phi_1 \not\equiv \psi_1 \quad \text{and} \quad \phi_2 \not\equiv \psi_2.
\]

This gives \((q - 1)\) one dimensional representations and \((q - 1)\) inequivalent \(q \) dimensional representations.
Table of Conjugacy classes

<table>
<thead>
<tr>
<th>conjugacy class</th>
<th>representative</th>
<th>No. of classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>central semisimple</td>
<td>((a \ 0))</td>
<td>(q - 1)</td>
</tr>
<tr>
<td>unitary</td>
<td>((a \ 1))</td>
<td>(q - 1)</td>
</tr>
<tr>
<td>non central semisimple</td>
<td>((a \ 0)), (a \neq b)</td>
<td>(\frac{(q-1)(q-2)}{2})</td>
</tr>
<tr>
<td>anisotropic</td>
<td>(0 \ -\alpha\bar{\alpha})\</td>
<td>(\frac{q^2-q}{2})</td>
</tr>
</tbody>
</table>
Mackey’s intertwining Theorem

- Let H and K be subgroups of G. If $g \in G$ then the set $HgK = \{ hgk \mid h \in H, k \in K \}$ is called a double coset with respect to subgroup H and K. The element g is called its representative.
- A complete set of representatives of all (H, K)-double cosets is denoted by $H \backslash G / K$.
- For $s \in H \backslash G / K$ we set $H_s = sHs^{-1} \cap K$.
- Consider the representation (τ, W) of H.
- The subgroup H_s has a natural representation (τ^s, W) defined by

$$\tau^s(x) = \tau(s^{-1}xs), \quad x \in H_s$$
If (ϕ, V) and (ψ, W) are two G-representations then

$$\text{Hom}_G(\phi, \psi) = \{ T : V \rightarrow W \mid T \text{ is } G \text{ - linear} \}.$$

Theorem

(Mackey’s Intertwining Theorem) Let H and K be subgroups of G and (U, σ) a representation of K and (W, τ) a representation of H. Then:

$$\text{Hom}_G(\text{Ind}^G_K(\sigma), \text{Ind}^G_H(\tau)) \cong \bigoplus_{s \in H \setminus G/K} \text{Hom}_{sHs^{-1} \cap K}(\sigma, \tau^s).$$
Continuation for Cases I and II

For our case $H = K = B$, where $B = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} | a, c, \in K^*, b \in K \}$
and $\sigma = \tau = (\mu_1, \mu_2)$.
Continuation for Cases I and II

- For our case $H = K = B$, where $B = \{(a \ b \ 0 \ c) \mid a, c, \in K^*, b \in K\}$ and $\sigma = \tau = (\mu_1, \mu_2)$.
- For $c \neq 0$:

$$
\begin{pmatrix}
a & b \\
c & d \\
\end{pmatrix} = \begin{pmatrix}
b - ac^{-1}d & a \\
0 & c \\
\end{pmatrix} \begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix} \begin{pmatrix}
1 & c^{-1}d \\
0 & 1 \\
\end{pmatrix}
$$
Continuation for Cases I and II

- For our case $H = K = B$, where $B = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} | a, c, \in K^*, b \in K \} \quad \text{and} \quad \sigma = \tau = (\mu_1, \mu_2)$.
- For $c \neq 0$:
 \[
 \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} b - ac^{-1}d & a \\ 0 & c \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & c^{-1}d \\ 0 & 1 \end{pmatrix}
 \]
- The double coset representatives $B \backslash \text{GL}_2(K)/B$ correspond to
 \[
 \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \},
 \]
Continuation for Cases I and II

- For our case $H = K = B$, where $B = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, c, \in K^*, b \in K \right\}$ and $\sigma = \tau = (\mu_1, \mu_2)$.
- For $c \neq 0$:
 \[
 \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} b - ac^{-1}d & a \\ 0 & c \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & c^{-1}d \\ 0 & 1 \end{pmatrix}
 \]
- The double coset representatives $B\backslash GL_2(K)/B$ correspond to
 \[
 \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\},
 \]
- Let $s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Then
 \[
 B \cap sBs^{-1} = T = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a.b \in K^* \right\}.
 \]
Observe that

$$(\mu_1, \mu_2)^s \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \mu_2(x)\mu_1(y).$$
Observe that

\[(\mu_1, \mu_2) \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \mu_2(x)\mu_1(y).\]

Hence by Mackey’s intertwining theorem we obtain that

\[\text{Hom}_G(\widehat{(\mu_1, \mu_2)}, \widehat{(\mu_1, \mu_2)}) = [\text{Hom}_B((\mu_1, \mu_2), (\mu_1, \mu_2))] \oplus [\text{Hom}_T((\mu_1, \mu_2), (\mu_2, \mu_1))].\]

The T-representations (μ_1, μ_2) and (μ_2, μ_1) are equivalent if and only if $\mu_1 = \mu_2$.

This implies $\text{dim}_\mathbb{C}(\text{Hom}_G(\widehat{(\mu_1, \mu_2)}, \widehat{(\mu_1, \mu_2)}))$ is equal to one for $\mu_1 \neq \mu_2$ and is equal to two for $\mu_1 = \mu_2$.

This combined with Schur’s Lemma gives the result.
<table>
<thead>
<tr>
<th>dimension</th>
<th>No of irreducible representations</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$q - 1$</td>
<td>one dimensional</td>
</tr>
<tr>
<td>q</td>
<td>$q - 1$</td>
<td>special</td>
</tr>
<tr>
<td>$q + 1$</td>
<td>$\frac{(q-1)(q-2)}{2}$</td>
<td>regular principal series</td>
</tr>
<tr>
<td>$q - 1$</td>
<td>$\frac{q^2-q}{2}$</td>
<td>cuspidal</td>
</tr>
</tbody>
</table>
References

