*Curvature and similarity*, Mich. Math. J., 30(1983), 361 - 367.

*Curvature inequalities and extremal properties of bundle shifts*, J. Operator Theory, 11(1984), 305 - 317.

*Curvature and the backward shift operator,*Proc. Amer. Math. Soc., 91(1984),105 - 107.

*On weighted shifts, curvature and similarity,*J. London Math. Soc.,(2) 31(1985), 357 - 368.

*The curvature function and similarity of operators,*Math. Vesnic, 37 (1985), 21 - 32.

*Curvature and Discrete series representation of SL2(IR)*, J. Int. Eqns and Operator Theory, 9 (1986), 452-459.

*Some calculations for Hilbert modules*, J. Orissa Math. Soc., 12-15 (1993-96), 75 - 85.

*Contractive modules, extremal problems and curvature inequalities,*J. Funct. Anal., 88 (1990), 118 - 134.

*Homogeneous tuples of operators and holomorphic discrete series representation of some classical groups,*J. Operator Th., 24 (1990), 23 - 32.

*Completely contractive modules and associated extremal problems,*J. Funct. Anal., 91 (1990), 213 - 220.

*Completely contractive modules and Parrott's example,*Acta. Math. Hungarica, 63(1994), 291 - 303.

*Pick-Nevanlinna interpolation theorem and multiplication operators on functional Hilbert spaces*, J. Int. Eqns. Operator Th., 14(1991), 825 - 836.

*Notes on the Brown-Douglas-Fillmore Theorem,*Inst. Conf. on Operator Alg., ISI-Bangalore, 1990.

*On homogeneous contractions and unitary representations of SU(1, 1),*J. Operator Th., 30(1993), 109 - 122.

*Contractive and completely contractive modules, matricial tangent vectors and distance decreasing metrics,*J. Operator Th., 30(1993), 353 - 380.

*Contractive homomorphisms and tensor product norms*, J. Int. Eqns. Operator Th., 21(1995), 255 - 269.

*Homogeneous tuples of operators and systems of imprimitivity,*Contemporary Mathematics, 185(1995), 67 - 76.

*Homogeneous operator tuples on twisted Bergman spaces,*J. Funct. Anal., 136(1996), 171 - 213.

*On Grothendieck constants*, preprint.

*Geometric invaraiants for resolutions of Hilbert modules*, In Operator Theory: Advances and Applications, 104(1998), 83 - 112, Birkhauser.

*Constant characteristic functions and homogeneous operators*, J. Operator Th., 37(1997), 51 - 65.

*On quotient modules - the case of arbitrary multiplicity*, J. Funct. Anal. 174 (2000), 364 - 398.

*A note on the multipliers and projective representations of semi-simple Lie groups*, Sankhya (ser. A), Special Issue on Ergodic Theory and Harmonic Analysis, 62 (2000), 425 - 432.

*Homogeneous operators and projective representations of the Mobius group: a survey*, Proc. Ind. Acad. Sc.(Math. Sci.), 111 (2001), 415 - 437.

*Scalar perturbations of the Nagy-Foias characteristic function,*IN Operator Theory : Advances and Application, special volume dedicated to the memory of Bela Sz.-Nagy, 127 (2001), 97 - 112.

*On quotient modules*, In Operator Theory : Advances and Applications, special volume dedicated to the memory of Bela Sz.- Nagy, 127 (2001), 203 - 209.

*The homogeneous shifts,*J. Funct. Anal., 204 (2003), 293 - 319.

*Geometric invariants for quotient modules from resolutions of Hilbert modules,*IN Operator Theory : Advances and Application, 129 (2001), 241 - 270.

*Some thoughts on Ando's Theorem and Parrott's example,*Lin. Alg. and Apln., 341 (2002), 357 - 367.

*Equivalence of quotient Hilbert modules,*Proc. Ind. Acad. Sc.(Math. Sci.), 113 (2003), 281 - 292.

*Characterizing quotient Hilbert modules*, International Workshop on Linear Algebra, Numerical Functional Analysis and Wavelet Analysis, 79 - 88, Allied Publishers Pvt. Ltd., 2003.

*Quasi-free resolutions of Hilbert modules,*J. Int. Eqns. Operator Th., 47 (2003), 435 - 456.

*On quasi-free Hilbert modules,*New York J. Math., 11 (2005), 547 - 561.

*Contractive and completely contractive homomorphisms of planar algebras*, Illinois J. Math., 49 (2005), 1181-1201.

*New construction of some homogeneous operators,*C. R. Acad. Sci. Paris, ser. I 342 (2006), 933 - 936.

*On the irreducibility of a class of homogeneous operators,*Operator Theory: Advances and Apllications, 176 (2007), 165 - 198, Birkhauser Verlag.

*Equivalence of quotient modules-II,*Trans. Amer. Math. Soc., 360 (2008), 2229 - 2264.

*Homogeneous operators on Hilbert spaces of holomorphic functions*, J. Func. Anal., 254 (2008), 2419 - 2436.

*-- homogeneous vector bundles,*Int. J. Math., 19 (2008), 1 - 19.

*Some geometric invariants from resolutions of Hilbert modules along a multi dimensional grid,*Hot topics in operator theory, Theta series in advanced mathematics, 2008, 13 - 21.

*Multiplicity free homogeneous operators in the Cowen-Douglas class*, Chap 5, pp. 83 - 101, Perspectives in Mathematical Sciences II, World Scientific Press, 2009.

*The curvature invariant for a class of Homogeneous operators,*Proc. London Math.Soc.,99 (2009), 557 - 584.

*A classification of homogeneous operators in the Cowen - Douglas class*, Integral Equations and Operator Theory, 63 (2009), 595 – 599.

*A sheaf theoretic model for analytic Hilbert modules,*Mathematisches Forschungsinstitut Oberwolfach, DOI: 10.4171/OWR/2009/20.

*The Bergman Kernel function*, INSA Platinum Jubilee special issue of Indian Journal of Pure and Applied Mathematics, 41 (2010), 189 - 197.

*Contractive Hilbert modules and their dilations over the polydisk algebra,*Israel J Math., 187 (2012), 141 - 165.

*Unitary invariants for Hilbert modules of finite rank,*J. Reine Angew. Math. 662 (2012), 165 - 204.

*A classification of homogeneous operators in the Cowen-Douglas class*, Adv. Math., 226 (2011) 5338 - 5360.

*Resolution Of singularities for a class of Hilbert modules,*, Indiana Univ. Math. J., 61 (2012), 1019 - 1050.

*Reproducing kernel for a class of weighted Bergman spaces on the symmetrized polydisc*, Proc Amer Math Soc, 141 (2013), 2361 - 2370.

*Infinitely divisible metrics and curvature inequalities for operators in the Cowen-Douglas class,*J. London Math. Soc., 88 (2013), 941 - 956.

*Flag structure for operators in the Cowen-Douglas class,*C. R. Math. Acad. Sci. Paris, 352 (2014), 511 - 514.

*Homogeneous bundles and operators in the Cowen-Douglas class,*C. R. Math. Acad. Sci. Paris, 354 (2016), 291- 295.

*Homogeenous vector bundles and intertwining operators for symmetric domains,*Adv. Math., 303 (2016) 1077 - 1121.

*Rigidity of the flag structure for a class of Cowen-Douglas operators,*J. Func. Anal., 272 (2017), no. 7, 2899–2932.

*Classification of quasi-homogeneou holomorphic curves and operators in the Cowen-Douglas class,*J. Func. Anal., 273 (2017), 2870 - 2915.

*Contractivity, complete contractivity and curvature inequalities,*Journal d'Analyse Mathematique, 136 (2018), 31-54.

*Contractivity and complete contractivity for finite dimensional Banach spaces,*J. Operator Theory 82 (2019), 23 - 47.

*On Reducing sub-modules of Hilbert modules with $\mathfrak S_n$-invariant Kernels,*J. Fun Anal., 276 (2019), 751-784.

*Curvature inequalities and extremal operators,*Illinois J. Math. 63 (2019), 193 - 217.

*Homogeneous Hermitian holomorphic vector bundles and the Cowen-Douglas class over bounded symmetric domains,*Adv. Math. 351 (2019), 1105 - 1138.

*Operators in the Cowen-Douglas class and related topics,*87 - 137, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, 2019. 47-02.

*Caratheodory-Fejer interpolation problem for the polydisc,*Studia Math., 254 (2020), 265-293.

*Singular Hilbert modules on Jordan-Kepler varieties*, In: Curto R.E., Helton W., Lin H., Tang X., Yang R., Yu G. (eds) Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology. Operator Theory: Advances and Applications, 278 (2020), 425 - 453, Birkhäuser.

*Decomposition of the tensor product of two Hilbert modules*, In: Curto R.E., Helton W., Lin H., Tang X., Yang R., Yu G. (eds) Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology. Operator Theory: Advances and Applications, 278 (2020), 221 - 265, Birkhäuser.

*Toeplitz C*-Algebras on boundary orbits of symmetric domains*, In: Bauer W., Duduchava R., Grudsky S., Kaashoek M. (eds) Operator Algebras, Toeplitz Operators and Related Topics. Operator Theory: Advances and Applications, 279 (2020), 307 - 341, Birkhäuser.

*A trace inequality for commuting tuple of operators*, Integr. Equ. Oper. Theory, 94 (2022), Paper No. 16, 37 pp.

*Geometric invariants for a class of submodules of analytic Hilbert modules via the sheaf model*, to appear, Complex Analysis and Oper. Theory.

*The relationship of the Gaussian curvature with the curvature of a Cowen-Douglas operator*, to appear.

*A product formula for homogeneous characteristic functions*, Preprint.

*Commuting tuple of multiplication operators homogeneous under the unitary group*, Preprint.