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Six days later, this was answered in a collaboration

involving several mathematicians (and a computer).
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On Saturday, December 16, 2017, Terrence Tao

posted on his blog a question, from Apoorva Khare.

Is there a homogeneous, (conjugacy invariant) length
function on the free group on two generators?

Six days later, this was answered in a collaboration

involving several mathematicians (and a computer).

This the story of the answer and its discovery.
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» A Group G is a set together with
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Groups

A Group G is a set together with
an associative binary operation G X G — G,
an identity e such that g-e=e-g =g forall g € G,
an inverse function g — g~ ! such that
g-gtl=gl - g=eforalged.
Integers Z with the addition operation form a group.
Pairs of real numbers with componentwise addition
form the group R?.
For n > 1, n X n real matrices with determinant 1

form a group (called S/(n, R)).
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Length functions

A pseudo-length function on a group G is a function
[: G — [0,00) such that
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Length functions

A pseudo-length function on a group G is a function
[: G — [0,00) such that
I(e) = 0, where e € G is the identity,
I(g71) = I(g) for all g € G (symmetry),
I(gh) < I(g) + I(h) for all g, h € G (the triangle
inequality).
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Length functions

A pseudo-length function on a group G is a function
[: G — [0,00) such that

I(e) = 0, where e € G is the identity,
I(g™1) = I(g) for all g € G (symmetry),
I(gh) < I(g) + I(h) for all g, h € G (the triangle
inequality).
A pseudo-length function / on a group G is said to be
a length function if /(g) > 0 for all g € G \ {e}.
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Length functions

A pseudo-length function on a group G is a function
[: G — [0,00) such that
I(e) = 0, where e € G is the identity,
I(g71) = I(g) for all g € G (symmetry),
I(gh) < I(g) + I(h) for all g, h € G (the triangle
inequality).

A pseudo-length function / on a group G is said to be
a length function if /(g) > 0 for all g € G \ {e}.

Norms on vector spaces, such as /(x,y) = \/x? + y?

on R?, are length functions.
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Homogeneity and Conjugacy invariance

A pseudo-length function / on a group G is said to be
homogeneous if /(g") = nl(g) for all g € G, n € Z.
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A pseudo-length function / on a group G is said to be
homogeneous if /(g") = nl(g) for all g € G, n € Z.
Norms are homogeneous — indeed Apoorva's question
was motivated by generalizing stochastic inequalities
from Vector spaces with norms.

Siddhartha Gadgil Homogeneous length functions on Groups 8 /31



Homogeneity and Conjugacy invariance

A pseudo-length function / on a group G is said to be
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Homogeneity and Conjugacy invariance

A pseudo-length function / on a group G is said to be
homogeneous if /(g") = nl(g) for all g € G, n € Z.
Norms are homogeneous — indeed Apoorva's question
was motivated by generalizing stochastic inequalities
from Vector spaces with norms.

A pseudo-length function / on a group G is said to be
conjugacy invariant if /(ghg™') = I(h) for all
g,heG.

If G is abelian (gh = hg for all g, h € G) this holds.
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Lengths and Metrics

Given a length [ : G — IR on a group G, we can
define a metric on G by d(x, y) = I(x"1y).
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Given a length [ : G — IR on a group G, we can
define a metric on G by d(x, y) = I(x"1y).

This is left-invariant, i.e., d(gx, gy) = d(x, y) for all
g,x,y €G.

Conversely any left invariant metric gives a length

I(g) :=d(e, g), with d(x,y) = I(x"ty).
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Lengths and Metrics

Given a length [ : G — IR on a group G, we can
define a metric on G by d(x, y) = I(x"1y).

This is left-invariant, i.e., d(gx, gy) = d(x, y) for all
g,x,y €G.

Conversely any left invariant metric gives a length
I(g) :=d(e, g), with d(x,y) = I(x"ty).

The metric d associated to / is right-invariant, (i.e.,
d(xg,yg) = d(x,y) for all g,x,y € G) if and only if
| is conjugacy invariant.
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The Free Group (a, )

Consider words in S = {«, 8, ™1, 571}, where we
think of &=t and 37! as simply formal symbols.
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The Free Group (a, )

Consider words in S = {«, 8, ™1, 571}, where we
think of &=t and 37! as simply formal symbols.

We regard two words as equal if they are related by a
sequence of moves given by cancellation of pairs of
adjacent letters that are inverses of each other.

For example, a3 tafa™t = aaBfa.

Formally, we define an equivalence relation and
consider the corresponding quotient.
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The Free group {(«, )

The group (o, 3) as a set consists of words in S up
to the equivalence given above.
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The Free group {(«, )

The group (o, 3) as a set consists of words in S up
to the equivalence given above.
Multiplication in {(a, 5) is given by concatenation, i.e.

(G&2---&n) - (hh .. 1) = &&. . &hh . I,
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to the equivalence given above.
Multiplication in {(a, 5) is given by concatenation, i.e.

(G&2---&n) - (hh .. 1) = &&. . &hh . I,

The identity e is the empty word.
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The Free group {(«, )

The group (o, 3) as a set consists of words in S up
to the equivalence given above.

Multiplication in {(a, 5) is given by concatenation, i.e.

(G&2---&n) - (hh .. 1) = &&. . &hh . I,

The identity e is the empty word.

The inverse of an element is obtained by inverting
letters and reversing the order, i.e.,

(L& .. . &) t=61 61
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The Question

Question (Apoorva Khare via Terence Tao)

Is there a function | : {«, B) — [0, 00) on the free group
on two generators such that
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The Question

Is there a function | : {«, B) — [0, 00) on the free group
on two generators such that

I(g) = 0 if and only if g = e (positivity).
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The Question

Is there a function | : {«, B) — [0, 00) on the free group
on two generators such that

I(g) = 0 if and only if g = e (positivity).
I(g71) = I(g) forall g € {(, B).
I(gh) < I(g)+ I(h) for all g, h € {a, ).
I(ghg™) = I(h) for all g, h € (a, B).
I(g") = nl(g) for all g € (o, 3), n € Z.
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Some observations

By counting the number of occurences of o and 3
with sign, we get a homomorphism ¢ : {«, B) — Z2.
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Some observations

By counting the number of occurences of o and 3
with sign, we get a homomorphism ¢ : {«, B) — Z2.
The length l2(x,y) = |x| + |y| on Z? induces a
homogeneous, conjugacy-invariant pseudo-length

1(g) = I2(¢(g)) on (o, B);

Siddhartha Gadgil Homogeneous length functions on Groups 14 /31



Some observations

By counting the number of occurences of o and 3
with sign, we get a homomorphism ¢ : {«, B) — Z2.
The length l2(x,y) = |x| + |y| on Z? induces a
homogeneous, conjugacy-invariant pseudo-length
1(g) = l2(¢(g)) on {a, B); however, as
plafa'p™t) =(0,0), l(aBa"'pt) =0.
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Some observations

By counting the number of occurences of o and 3
with sign, we get a homomorphism ¢ : {«, B) — Z2.
The length l2(x,y) = |x| + |y| on Z? induces a
homogeneous, conjugacy-invariant pseudo-length
1(g) = l2(¢(g)) on {a, B); however, as
plafa'p™t) =(0,0), l(aBa"'pt) =0.

(Fritz) Homogeneity implies conjugacy invariant.
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Some observations

By counting the number of occurences of o and 3
with sign, we get a homomorphism ¢ : {«, B) — Z2.
The length l2(x,y) = |x| + |y| on Z? induces a
homogeneous, conjugacy-invariant pseudo-length
1(g) = l2(¢(g)) on {a, B); however, as
plafa1571) = (0,0), l(apa 1871 = 0.

(Fritz) Homogeneity implies conjugacy invariant.
(Tao, Khare) Homogeneity follows from

I(g?) > 2l(g) for all g € (a0, B).

Siddhartha Gadgil Homogeneous length functions on Groups 14 /31



The Quest

Over the first 4-5 days after the question was posted,
there were many (failed, but instructive) attempts to
construct such length functions;
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Over the first 4-5 days after the question was posted,
there were many (failed, but instructive) attempts to
construct such length functions;
in particular | focussed on a construction using
non-crossing matchings,
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construct such length functions;

in particular | focussed on a construction using
non-crossing matchings, but this was not homogeneous;
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Over the first 4-5 days after the question was posted,
there were many (failed, but instructive) attempts to
construct such length functions;
in particular | focussed on a construction using
non-crossing matchings, but this was not homogeneous;
the failures of various constructions led to the feeling
that /(aBa~1571) = 0 for homogeneous pseudo-lengths;
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The Quest

Over the first 4-5 days after the question was posted,
there were many (failed, but instructive) attempts to
construct such length functions;
in particular | focussed on a construction using
non-crossing matchings, but this was not homogeneous;
the failures of various constructions led to the feeling
that /(aBa~1571) = 0 for homogeneous pseudo-lengths;
increasingly sharp bounds and methods of combining
bounds were found, but there was no visible path to

proving /(aBa~1571) = 0.
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The Quest

Over the first 4-5 days after the question was posted,
there were many (failed, but instructive) attempts to
construct such length functions;
in particular | focussed on a construction using
non-crossing matchings, but this was not homogeneous;
the failures of various constructions led to the feeling
that /(aBa~1571) = 0 for homogeneous pseudo-lengths;
increasingly sharp bounds and methods of combining
bounds were found, but there was no visible path to
proving /(aBa~1571) = 0.

On Thursday morning | posted a proof of a

computer-assisted bound.
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Proof which | posted online

Proof of a bound on /(aBa~t371) for | a homogeneous, conjugacy
invariant length function with /(«), /(8) < 1.
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Proof which | posted online

Proof of a bound on /(aBa~t371) for | a homogeneous, conjugacy
invariant length function with /(«), /(8) < 1.

|al <1.0

|bab| < 1.0 using |3] < 1.0

bl <1.0

|aba| < 1.0 using |b| < 1.0

|ababab| < 2.0 using |aba| < 1.0 and |bab| < 1.0

... (119 lines)
|abababababababababababababababababababababababababababababababababab| <
13.859649122807017 using |aba| <1.0and _
|babababababababababababababababababababababababababababababababab| <
12.859649122807017

|abab| < 0.8152734778121775 using
|abababababababababababababababababababababababababababababababababab| <
13.859649122807017 by taking 17th power.
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Proof which | posted online

Proof of a bound on /(aBa~t371) for | a homogeneous, conjugacy
invariant length function with /(«), /(8) < 1.

|al <1.0

|bab| < 1.0 using |3] < 1.0

bl <1.0

|aba| < 1.0 using |b| < 1.0

|ababab| < 2.0 using |aba| < 1.0 and |bab| < 1.0

... (119 lines)
|abababababababababababababababababababababababababababababababababab| <
13.859649122807017 using |aba| <1.0and _
|babababababababababababababababababababababababababababababababab| <
12.859649122807017

|abab| < 0.8152734778121775 using
|abababababababababababababababababababababababababababababababababab| <
13.859649122807017 by taking 17th power.

ie., I(o, B) < 0.8152734778121775
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The computer-generated proof was studied by Pace
Nielsen, who extracted the internal repetition trick.
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This was extended by Pace Nielsen and Tobias Fritz
and generalized by Terence Tao.

Siddhartha Gadgil Homogeneous length functions on Groups 17 / 31



The computer-generated proof was studied by Pace
Nielsen, who extracted the internal repetition trick.

This was extended by Pace Nielsen and Tobias Fritz
and generalized by Terence Tao.

From this Fritz obtained the key lemma:
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The computer-generated proof was studied by Pace
Nielsen, who extracted the internal repetition trick.

This was extended by Pace Nielsen and Tobias Fritz
and generalized by Terence Tao.

From this Fritz obtained the key lemma:

Let f(m, k) = I(x™(xyx "ty =1)¥). Then

flm—1,k)+f(m+1,k—1)
5 :

f(m k) <

Siddhartha Gadgil Homogeneous length functions on Groups 17 / 31



The computer-generated proof was studied by Pace
Nielsen, who extracted the internal repetition trick.

This was extended by Pace Nielsen and Tobias Fritz
and generalized by Terence Tao.

From this Fritz obtained the key lemma:

Let f(m, k) = I(x™(xyx "ty =1)¥). Then

F(m. K) < f(m—l,k)+f(m+1,k—1).

2
Using Probability, Tao showed /(a3a~1371) = 0.
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Computer Bounds and Proofs
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Bounds from Conjugacy invariance

Fix a conjugacy-invariant, normalized length function

[:{a,B) — R, ie with [(«),I(5) < 1.
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Bounds from Conjugacy invariance

Fix a conjugacy-invariant, normalized length function

[:{a,B) — R, ie with [(«),I(5) < 1.
Let g = &1& ... &, with n > 1.
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Bounds from Conjugacy invariance

Fix a conjugacy-invariant, normalized length function

[:{a,B) — R, ie with [(«),I(5) < 1.
Let g = &1& ... &, with n > 1.

By the triangle inequality

I(g) <1+ 1(&&---&n)-
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Bounds from Conjugacy invariance

Fix a conjugacy-invariant, normalized length function

[:{a,B) — R, ie with [(«),I(5) < 1.
Let g = &1& ... &, with n > 1.

By the triangle inequality
I(g) <14 1(&& ... &)

If & = 51_1, by the triangle inequality and conjugacy
invariance

I(g) < I(&&3 .. Ek—1) + 1(Ekt1ék+2 - - - &n)
as (616 ... &) = 1(&& . &ai&t ) = (66 - - &),
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g

) by:
If g = e is the empty word, define L(g) := 0.
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.
If g = & has exactly one letter, define L(g) := 1.
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.

If g = & has exactly one letter, define L(g) := 1.
If g = &1& ... &, has at least two letters:
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.

If g = & has exactly one letter, define L(g) := 1.
If g = &1& ... &, has at least two letters:
let \og =1+ L(&E3...&,) (computed recursively).
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.

If g = & has exactly one letter, define L(g) := 1.
If g = &1& ... &, has at least two letters:

let \og =1+ L(&E3...&,) (computed recursively).
let A be the (possibly empty) set

{L(&&s .. k1) L(krrbhan- - &n) 12 < k< n & =&}
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The recursive algorithm

For g € F, compute L(g) such that /(g) < L(g) by:
If g = e is the empty word, define L(g) := 0.

If g = & has exactly one letter, define L(g) := 1.
If g = &1& ... &, has at least two letters:

let \og =1+ L(&E3...&,) (computed recursively).
let A be the (possibly empty) set

{L(&&s . &)+ L(Erabrra. &) 12 < k< n & =&}
define L(g) := min({\o} UA).
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Ad hoc bounds using Homogeneity

For chosen g € (a, B), n > 1, homogeneity gives
I(g) < L(g")/n for | a normalized, homogeneous
length function on («, 3).
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Ad hoc bounds using Homogeneity

For chosen g € (a, B), n > 1, homogeneity gives
I(g) < L(g")/n for | a normalized, homogeneous
length function on («, 3).

Further, we can use this (in general improved) bound
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Ad hoc bounds using Homogeneity

For chosen g € (a, B), n > 1, homogeneity gives
I(g) < L(g")/n for | a normalized, homogeneous
length function on («, 3).

Further, we can use this (in general improved) bound
(in place of L(g)) recursively in the above algorithm.
We computed such bounds in interactive sessions.
The words used were a(afSat371)%, chosen based
on non-homogeneity of the conjugacy-invariant length
function /yc based on non-crossing matchings.
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From bounds to Proofs
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which could be viewed as embedded in Homotopy

Type Theory;

Siddhartha Gadgil Homogeneous length functions on Groups 22 /31



From bounds to Proofs

Rather than (recursively) generating just bounds, we
can recursively generate proofs of bounds.

These were in terms of domain specific foundations,
which could be viewed as embedded in Homotopy
Type Theory; which is a system of foundations of
mathematics related to topology.
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From bounds to Proofs

Rather than (recursively) generating just bounds, we
can recursively generate proofs of bounds.

These were in terms of domain specific foundations,
which could be viewed as embedded in Homotopy
Type Theory; which is a system of foundations of
mathematics related to topology.

In this case, we can instead view our algorithm as just
keeping track of relevant inequalities.
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Domain specific foundations in scala

Proofs were represented as objects of a specific type.
The correctness was independent of discovery.
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Domain specific foundations in scala

Proofs were represented as objects of a specific type.
The correctness was independent of discovery.

sealed abstract class LinNormBound(val word: Word, val bound: Double)
final case class Gen(n: Int) extends LinNormBound(Word(Vector(n)), 1)

final case class ConjGen(n: Int,pf: LinNormBound) extends
LinNormBound(n +: pf.word :4+ (—n), pf.bound)

final case class Triang(
pfl: LinNormBound, pf2: LinNormBound) extends
LinNormBound ( pfl.word 4++ pf2.word, pfl.bound + pf2.bound)

final case class PowerBound(
baseword: Word, n: Int, pf: LinNormBound) extends
LinNormBound (baseword , pf.bound/n){require(pf.word = baseword.pow(n))}

final case object Empty extends LinNormBound(Word(Vector()), 0)
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The Theorem and Proof
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The main results

For any group G, every homogeneous pseudo-length
| : G — R is the pullback of a homogeneous
pseudo-length on the abelianization G /|G, G].
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The main results

For any group G, every homogeneous pseudo-length
[ : G — R is the pullback of a homogeneous
pseudo-length on the abelianization G /|G, G].

If G is not abelian (e.g. G = TF,) there is no homogeneous
length function on G.
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Internal Repetition trick

If x = s(wy)s™t = t(zw 1)t 7, we have I(x) < w
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Internal Repetition trick

If x = s(wy)s™t = t(zw 1)t 7, we have I(x) < /(y);/(z).
I(x"x") = I(s(wy)"s " t(zw )"t ")
< n(l(y) +1(2)) +2(/(s) + 1(t))

A

SWYWYWy...5t...zwzwzwt
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Internal Repetition trick

If x = s(wy)s™t = t(zw 1)t 7, we have I(x) < /(y);/(z).
I(x"x") = I(s(wy)"s " t(zw )"t ")
< n(l(y) +1(2)) +2(/(s) + 1(t))

A

SWYWYWy...5t...zwzwzwt

Use /(x) = % and take limits.
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Tao's probability theory argument

The inequality f(m, k) < f(m_l’k)+£(m+1’k_1) can be
interpreted as the average of f being non-decreasing
along the random walk on Z? where we move by

(—1,0) or (1,—1) with equal probability.

Siddhartha Gadgil Homogeneous length functions on Groups 27 / 31



Tao's probability theory argument

The inequality f(m, k) < f(m_l’k)+£(m+1’k_1) can be
interpreted as the average of f being non-decreasing
along the random walk on Z? where we move by
(—1,0) or (1,—1) with equal probability.

The average displacement of a step is (0, —1/2).

Siddhartha Gadgil Homogeneous length functions on Groups 27 / 31



Tao's probability theory argument

The inequality f(m, k) < f(m_l’k)Jr;(mH’k_l) can be
interpreted as the average of f being non-decreasing
along the random walk on Z? where we move by
(—1,0) or (1,—1) with equal probability.

The average displacement of a step is (0, —1/2).

Hence taking 2n steps starting at (0, n) gives an upper
bound for £(0,2n) = I((aBa~1371)") by the average
length for a distribution centered at the origin.
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Tao's probability theory argument

The inequality f(m, k) < f(m_l’k)+£(m+1’k_1) can be

interpreted as the average of f being non-decreasing

along the random walk on Z? where we move by
(—1,0) or (1,—1) with equal probability.

The average displacement of a step is (0, —1/2).
Hence taking 2n steps starting at (0, n) gives an upper
bound for £(0,2n) = I((aBa~1371)") by the average
length for a distribution centered at the origin.

This was bounded using the Chebyshev inequality.
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Epilogue
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On the computer proof

A limitation was that the elements for which we
applied homogeneity were selected by hand.
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On the computer proof

A limitation was that the elements for which we
applied homogeneity were selected by hand.
More importantly, in our representations of proofs,

the bounds were only for concrete group elements.
In particular, we could not

represent inequalities for expressions,

use induction.

Would want proof in complete foundations; which |
completed a few days after the PolyMath proof (in
my own implementation of HoTT).
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Quasification

The function / : G — [0, 00) is a quasi-pseudo-length
function if there exists ¢ € R such that

I(gh) < I(g) +I(h)+c, forall g, h € G.
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The function / : G — [0, 00) is a quasi-pseudo-length
function if there exists ¢ € R such that

I(gh) < I(g) +I(h)+c, forall g, h € G.

We see that for a homogeneous quasi-pseudo-length
function, /(xyx 1y™1) < 4cforall x,y € G.
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Quasification

The function / : G — [0, 00) is a quasi-pseudo-length
function if there exists ¢ € R such that

I(gh) < I(g) +I(h)+c, forall g, h € G.

We see that for a homogeneous quasi-pseudo-length
function, /(xyx 1y™1) < 4cforall x,y € G.

For a group with vanishing stable commutator length,
e.g. G = 5/(3,7Z), any homogeneous
quasi-pseudo-length function is equivalent to a

pullback from G/[G, G].
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Afterword

This work became PolyMath 14, and has been
published in Algebra & Number Theory.
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Afterword

This work became PolyMath 14, and has been
published in Algebra & Number Theory.

The work was a spontaneous collaboration across (at
least) three continents, and a range of skills.

A computer generated but human readable proof was
read, understood, generalized and abstracted by
mathematicians to obtain the key lemma in an
interesting mathematical result;
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Afterword

This work became PolyMath 14, and has been
published in Algebra & Number Theory.

The work was a spontaneous collaboration across (at
least) three continents, and a range of skills.

A computer generated but human readable proof was
read, understood, generalized and abstracted by
mathematicians to obtain the key lemma in an
interesting mathematical result; this is perhaps the
first time this has happened.
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