
ON THE GROWTH OF THE BERGMAN KERNEL
NEAR AN INFINITE-TYPE POINT

GAUTAM BHARALI

Abstract. We study diagonal estimates for the Bergman kernels of certain
model domains in C2 near boundary points that are of infinite type. To do
so, we need a mild structural condition on the defining functions of interest
that facilitates optimal upper and lower bounds. This is a mild condition;
unlike earlier studies of this sort, we are able to make estimates for non-convex
pseudoconvex domains as well. This condition quantifies, in some sense, how flat
a domain is at an infinite-type boundary point. In this scheme of quantification,
the model domains considered below range — roughly speaking — from being
“mildly infinite-type” to very flat at the infinite-type points.

1. Statement of Results

Let Ω ⊂ C2 be a pseudoconvex domain (not necessarily bounded) having a
smooth boundary. Let p ∈ ∂Ω be a point of infinite type: by this we mean that
for each N ∈ Z+, there exists a germ of a 1-dimensional complex-analytic variety
through p whose order of contact with ∂Ω at p is at least N . If ∂Ω is not Levi-flat
around p, there exist holomorphic coordinates (z, w;Vp) centered at p such that

(1.1) Ω
⋂
Vp = {(z, w) ∈ Vp : Imw > F (z) +R(z,Rew)},

where F is a smooth, subharmonic, non-harmonic function defined in a neighbour-
hood of z = 0, that vanishes to infinite order at z = 0; R(· , 0) vanishes to infinite
order at z = 0; and R is O(|z||Rew|, |Rew|2). Given the infinite order of vanishing
of F at z = 0, how does one find estimates for the Bergman kernel of Ω near p ?
In many cases — for instance: when ∂Ω∩Vp is pseudoconvex of strict type, in the
sense of [5], away from p ∈ ∂Ω — the function F in (1.1) can be extended to a
global subharmonic function. In such situations, the model domain

(1.2) ΩF := {(z, w) ∈ C2 : Imw > F (z)},

approximates ∂Ω to infinite order along the complex-tangential directions at p.
One is thus motivated to investigate estimates for the Bergman kernel for domains
of the form (1.2). In this paper, we shall find estimates for the Bergman kernel of
ΩF on the diagonal as one approaches (0, 0) ∈ ∂ΩF . More specifically:

• We shall derive estimates that hold not just in a non-tangential interior
cone with vertex at (0, 0), but for a family of much larger approach regions
that comprises regions with arbitrarily high orders of contact at (0, 0); and
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• We shall find optimal estimates for the growth of the kernel (evaluated on
the diagonal of ΩF ×ΩF ) as (z, w) −→ (0, 0) through any of the aforemen-
tioned approach regions.

Pointwise estimates, and a lot more, have been obtained for finite-type domains
in C2; see for instance [2] by Diederich et al; [8] and [9] by Nagel et al; and [7]
by McNeal. In [4], Kim and Lee provide some estimates on the diagonal for the
Bergman kernel, as one approaches an infinite-type boundary point, for a class of
convex, infinite-type domains in C2. However, to the best of our knowledge, not
even pointwise estimates are known for any reasonably general class of pseudocon-
vex (not necessarily convex) domains of infinite type. Determining such estimates
even for model domains of the form (1.2) is not so easy. For instance, techniques
analogous to the scaling methods used in the papers [7] and [9], in [1] by Boas et al,
and in [6] by Krantz-Yu do not seem to yield optimal estimates. Another problem
is that we do not know a priori whether ΩF — recall that our models do not arise
as limits of scalings of bounded domains — even has a non-trivial Bergman space.
Things become tractable if we impose a simplifying condition on F :

(∗)

{
F is a radial function, i.e. F (z) = F (|z|) ∀z ∈ C, and
∃η > 0 such that F (z) ≥ C|z|η when |z| ≥ R for some R > 0 and C > 0.

Under this condition, ΩF has a non-trivial Bergman space; see for instance [3]
by Haslinger. However, given the condition (∗), we can say more: under this
condition, ΩF has a bounded realization and thus admits a localization principle for
the Bergman kernel. To state this precisely, we recall that the Bergman projection
for Ω is the orthogonal projection BΩ : L2(Ω) −→ O(Ω)∩L2(Ω), and the Bergman
kernel is the kernel representing this projection. Let us denote the Bergman kernel
of ΩF as BF (Z,Z ′), (Z,Z ′) ∈ ΩF × ΩF . We will denote the kernel restricted to
the diagonal by KF (z, w) := BF ((z, w), (z, w)). We can now state

Proposition 1.1. Let F be a C∞-smooth subharmonic function that vanishes to
infinite order at 0 ∈ C and satisfies the condition (∗). Assume that the boundary of
the domain ΩF := {(z, w) ∈ C2 : Imw > F (z)} is not Levi-flat around the origin.
Then:

1) There exists an injective holomorphic map Ψ defined in a neighbourhood of
ΩF such that Ψ(ΩF ) is a bounded pseudoconvex domain.

2) For each polydisc 4 centered at the origin, there exists a constant δ ≡
δ(4) > 0 such that

(1.3) δKΩF∩4(z, w) ≤ KF (z, w) ∀(z, w) ∈ ΩF ∩ (1
24).

Yet, does the condition (∗) confer any degree of control on the decay of F near
z = 0 that is sufficient for optimal estimates; estimates on KF (z, w) from below
in particular ? Even if F is radial, KF (z, w) & ‖(z, w)‖−2 is the best that one
expects (for non-tangential approach) without any additional information on F .
To illustrate: the condition that (0, 0) ∈ ∂ΩF is of finite type facilitates optimal
estimates because, with this extra information:
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• one can find constants C, δ > 0, and a M ∈ Z+ such that

(∗∗) B2(0; δ) ∩ {(z, w) : Imw > C|z|2M} ⊂ ΩF ∩ B2(0; δ)

⊂ B2(0; δ) ∩ {(z, w) : Imw > (1/C)|z|2M};

• one can now make precise estimates by exploiting the simplicity of the
prototypal defining function z 7−→ |z|2M .

Some condition that enables one to work — in the spirit of (∗∗) — with easier-to-
handle prototypes of F is called for if one wants optimal estimates in the infinite-
type case. It turns out that we do have useful information if the infinite-type F
satisfies the condition (1.4) spelt out in Theorem 1.2 below. While this condition
might look rather arbitrary, it is in fact a mild restriction. It is, in some sense, a
signature of F being of infinite type: a domain ΩF satisfying (1.4) is necessarily of
infinite type at (0, 0). The condition (1.4) encompasses a large class of domains,
ranging from the “mildly infinite type” to the very flat at (0, 0) (refer to the
observations following Theorem 1.2).

We need one further piece of notation. Let f : [0,∞) −→ R be a strictly
increasing function, and let f(0) = 0. We define the function Λf as

Λf (x) :=

{
−1/ log(f(x)), if 0 < x < f−1(1),
0, if x = 0.

We can now state our main theorem.

Theorem 1.2. Let F be a C∞-smooth subharmonic function that vanishes to in-
finite order at 0 ∈ C and satisfies the condition (∗). Suppose the boundary of the
domain ΩF := {(z, w) ∈ C2 : Imw > F (z)} is not Levi-flat around the origin.

1) Define f by the relation f(|z|) = F (z). Then, f is a strictly increasing
function on [0,∞).

2) Assume that F satisfies the following condition:

∃ constants B, ε0 > 0, and a function χ ∈ C([0, ε0];R) s.t.

χp is convex on (0, ε0) for some p > 0, and(1.4)

(1/B)χ(x) ≤ Λf (x) ≤ Bχ(x) ∀x ∈ [0, ε0].

Then, for each α > 0 and N ∈ Z+, there exists a constant HN,α > 0, which
depends only on α and N ; and C0, C1 > 0, which are independent of all
parameters, such that:

C0(Imw)−2
[
f−1(Imw)

]−2 ≤ KF (z, w) ≤ C1(Imw)−2
[
f−1(Imw)

]−2(1.5)

∀(z, w) ∈ Aα,N , 0 < Imw < HN,α,

where Aα,N denotes the approach region

Aα,N :=
{

(z, w) ∈ ΩF :
√
|z|2 + |Rew|2 < α(Imw)1/N

}
.

3) Under the assumptions of (2), there exists a constant H0 > 0 that is inde-
pendent of all parameters such that the left-hand inequality in (1.5) in fact
holds for all (z, w) ∈ ΩF ∩ {(z, w) : Imw < H0}.
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The reader might like to see examples of domains that satisfy all the hypotheses
of Theorem 1.2. We discuss two examples, beginning with a very familiar example.

Example 1.3. Estimates for the pseudoconvex domain

Ωβ := {(z, w) ∈ C2 : Imw > Fβ(z)}
where:

• Fβ is subharmonic;
• Fβ(z) = exp(−1/|z|β), β > 0, in a neighbourhood of z = 0; and
• Fβ(z) grows like |z|2 for |z| � 1.

We just have to check whether F satisfies the condition (1.4). There exists an
ε0 > 0 such that Λf (x) = xβ ∀x ∈ [0, ε0]. We pick

p =

{
any number q such that qβ > 1, if 0 < β ≤ 1,
1, if β > 1.

With such a choice for p, (Λf )p itself is convex on (0, ε0). Hence, Theorem 1.2
tells us that for each α > 0 and N ∈ Z+, there exists a constant HN,α > 0; and
C0, C1 > 0, which are independent of all parameters, such that:

C0t
−2 (log(1/t))2/β ≤ KΩβ (z, s+ it) ≤C1t

−2 (log(1/t))2/β

∀(z, s+ it) ∈ Aα,N and 0 < t < HN,α. �

Remark 1.4. We would like to emphasize here that Λf is allowed to vanish to
infinite order at the origin, provided it satisfies condition (1.4). So, for example,
Theorem 1.2 will provide optimal growth estimates for KF for a domain ΩF of the
form (1.2) where

• F (z) = exp
{
−e1/|z|} if z : 0 ≤ |z| ≤ 1/4; and

• F (z) is so defined for |z| ≥ 1/4 that F satisfies condition (∗) and ΩF is
pseudoconvex with non-Levi-flat boundary.

Domains like these are what we informally termed above as “very flat at (0, 0)”.
The methods used by Kim and Lee in [4] do not seem to work for domains like
these precisely because Λf vanishes to infinite order.

A few technical preliminaries are needed before a proof of Theorem 1.2 can be
given. It would be helpful to get a sense of the key ideas of our proof. A discussion
of our methodology, plus two lemmas, are presented in Section 3. The proof itself is
given in Section 4. In some sense, our key technical preliminary — without which
sharp lower bounds would be tricky to derive — is the proof of Proposition 1.1.
This proof will form our next section.

2. The proof of Proposition 1.1

Let η > 0 be as given in the condition (∗). We define

κη :=

{
the least positive integer κ such that κ > 1/η, if 0 < η ≤ 1,
1, if η > 1.
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Define the objects

Ψ = (ψ1, ψ2) : (z, w) 7−→
(

(2i)κηz

(i+ w)κη
,
i− w

i+ w

)
,

Π := C× {w ∈ C : Imw > −1}.

Note that Ψ ∈ O(Π;C2) and that Ψ is injective on Π. Define f by the relation
f(|z|) = F (z). Then, under our hypotheses, f is strictly increasing, whence F (z) ≥
0 ∀z ∈ C. The reader is directed to Lemma 3.1 for a proof of this fact. Thus
ΩF  Π, whence Ψ is injective on ΩF .

We now claim that Ψ(ΩF ) is bounded. To see this, note that any (z, w) ∈ ΩF

can be written as (z,Rew + i(F (z) + h), where h > 0. Thus

(2.1) |ψ2(z, w)|2 =
(F (z) + h− 1)2 + (Rew)2

(F (z) + h+ 1)2 + (Rew)2
≤ 1 ∀(z, w) ∈ ΩF .

We used the fact that F (z) ≥ 0 ∀z ∈ C to deduce this estimate. Now note that

|ψ1(z, w)|2 =
4κη |z|2

((F (z) + h+ 1)2 + (Rew)2)κη
.

Let R > 0 and C > 0 be exactly as given in the condition (∗). Then

|ψ1(z, w)|2 ≤ 4κηR2

(F (z) + h+ 1)2κη
≤ 4κηR2 ∀(z, w) ∈ ΩF and |z| ≤ R.

On the other hand

|ψ1(z, w)|2 ≤ 4κη |z|2

(F (z))2κη
≤ 4κη |z|2

C2κη |z|2ηκη
∀(z, w) ∈ ΩF and |z| ≥ R.

From the last two inequalities, we conclude that

(2.2) |ψ1(z, w)|2 ≤ max
{

4κηR2,

(
4
C2

)κη

R−2(ηκη−1)

}
∀(z, w) ∈ ΩF .

From (2.1) and (2.2), our claim, and hence Part (1), follows.
To demonstrate Part (2), we will need a localization principle established by

Ohsawa:
Localization Lemma (Ohsawa, [10]) Let D be a bounded pseudoconvex
domain in Cn, p be a boundary point, and V b U be two open neighbour-
hoods of p. Then, there is a constant δ ≡ δ(U, V ) > 0 such that

δKD∩U (Z) ≤ KD(Z) ∀Z ∈ D ∩ V.
Substituting

D = Ψ(ΩF ), p = (0, 1),

D ∩ U = Ψ(ΩF ∩4), D ∩ V = Ψ
(
ΩF ∩

(
1
24
))

into the localization lemma, we conclude that there exists a δ ≡ δ(4) > 0 such
that (here GF stands for Ψ(ΩF ))

(2.3) δKGF∩U (Ψ(z, w)) ≤ KGF
(Ψ(z, w)) ∀(z, w) ∈ ΩF ∩ (1

24).

Recall, however, the transformation rule for the Bergman kernel:

KΩj (z, w) = |JacC(Ψ)(z, w)|2KΨ(Ωj)(Ψ(z, w)) ∀(z, w) ∈ Ωj , j = 1, 2,
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where, in the present case, Ω1 = ΩF and Ω2 = ΩF ∩ 4. Applying this to (2.3)
gives us the inequality (1.3). �

3. Preliminary remarks and lemmas

The idea behind the upper bound in (1.5) is quite standard. Given a point
(z0, w0) ∈ ΩF , the quantity KF (z0, w0) is dominated by the reciprocal of the
volume of the largest polydisc centered at (z0, w0) that is contained in ΩF . The
volume of this polydisc will be influenced by the curvature of ∂ΩF at the point
on ∂ΩF that is closest to (z0, w0). However, if (z0, w0) is confined to any of the
approach regions Aα,N , then this volume is controlled by the boundary geometry at
(0, 0) ∈ ∂ΩF . That one has this control for any approach region Aα,N — regardless
of α and N — is a consequence of the fact that (0, 0) is of infinite type.

The derivation of the lower bound in (1.5) relies on the construction of a suitable
square-integrable holomorphic function. In this construction, we are aided by the
localization principle stated in Proposition 1.1. The three main ingredients in the
derivation of the lower bound are:

i) We choose a suitable polydisc4 centered at (0, 0) and estimateKΩF∩4(z, w)
for (z, w) ∈ Aα,N ∩

(
1
24
)
. We rely on the fact that KΩF∩4(z, w) is given

by

KΩF∩4(z, w) = sup

{
|φ(z, w)|2

‖φ‖2
L2(ΩF∩4)

: φ ∈ A2(ΩF ∩4)

}
.

ii) To obtain a lower bound, we select a suitable function φt ∈ A2(ΩF ∩
4) and estimate ‖φt‖2

A2 , t > 0. This reduces finding a lower bound for
KΩF∩4(z, s+ it), (z, s+ it) ∈ Aα,N ∩

(
1
24
)
, to estimating an integral over

a region in R4 whose boundaries are determined by the function f .
iii) The difficult issue is to find the desired bound in terms of t for the latter

integral. The condition (1.4) is used to break up the aforementioned region
of integration into sub-domains on which the integral admits the desired
estimate.

We now present two lemmas that will be necessary to complete the proof of
Theorem 1.2. Lemma 3.1 constitutes the proof of Part (1) of Theorem 1.2.

Lemma 3.1. Let F be a smooth subharmonic function on C such that F (0) = 0
and F is radial. Define f by the relation f(|z|) = F (z), and write ΩF := {(z, w) ∈
C2 : Imw > F (z)}. Assume that ΩF is not Levi-flat in a neighbourhood of (0, 0).
Then f is a strictly increasing function on [0,∞).

Proof. Suppose there exist r1 < r2, with r1, r2 ∈ [0,∞), such that f(r1) ≥ f(r2).
Then, by our hypothesis on F

sup
z∈∂D(0;r2)

F (z) = f(r2) ≤ f(r1).

By the Maximum Principle, therefore, F |D(0,r2) ≡ 0. But then, this would imply
that the portion ∂ΩF ∩B2(0; r2) of ∂ΩF is Levi-flat; i.e. a contradiction. Hence f
is strictly increasing. �
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Lemma 3.2. Let F and ΩF have all the properties listed in Lemma 3.1. Let Λf

satisfy the condition (1.4), and let (since, in view of Lemma 3.1, f is increasing)
Gf := Λ−1

f . Then, there exist constants T > 0 and K > 0 such that

(3.1) 0 < Gf (2t)2 −Gf (t)2 ≤ KGf (t)2 ∀t ∈ (0, T ).

Proof. We just have to show that there exist T > 0 and M > 0 such that

(3.2) 0 < Gf (2t)−Gf (t) ≤ MGf (t) ∀t ∈ (0, T ).

If we could show this, then it would follow that

Gf (2t)2 −Gf (t)2 ≤ M(M + 2)Gf (t)2 ∀t ∈ (0, T ).

To proceed further, we need the following:
Fact. Let g be a continuous, strictly increasing function on [0, R] satisfying g(0) =
0, and assume gp is convex on (0, R) for some p > 0. Define G := g−1, and let
B > 1. Then:

(3.3)
G(Bt)
G(t)

≤ Bp ∀t ∈ (0, g(R)/B).

To verify this fact, set Φ := (gp)−1. Then:

(3.4) Φ(t) = G(t1/p) ∀t ∈ [0, g(R)p],

By hypothesis, Φ is concave on (0, g(R)p). But since Φ is also continuous,

Φ(Bptp)
Bptp

≤ Φ(tp)
tp

∀t ∈ (0, g(R)/B).

The above fact now follows simply by rearranging the terms in the above inequality,
and applying (3.4).

Now let ε0, B, χ, and p be as in (1.4). Let us also define

κ0 := (χ)−1 : [0, χ(ε0)] −→ R
κ1 := (Bχ)−1 : [0, Bχ(ε0)] −→ R

κ2 := [(1/B)χ]−1 : [0, (1/B)χ(ε0)] −→ R

Since Λf and χ are strictly increasing (in view of Lemma 3.1), condition (1.4)
implies that:

κ1(t) ≤ Gf (t) ≤ κ2(t) ∀t ∈ [0, T1],
where T1 := (1/B)χ(ε0). Therefore, we get

(3.5)
Gf (2t)
Gf (t)

≤ κ2(2t)
κ1(t)

=
κ2(2t)
κ2(t)

κ2(t)
κ1(t)

∀t ∈ (0, T1/2).

We now note that

κ1(t) = κ0(B−1t), κ2(t) = κ0(Bt) ∀t ∈ [0, T1].

Given this last piece of information, we can apply the inequality (3.3) to the ratios
on the right-hand side of (3.5). Set T := min(T1/2, (1/B)T1). Then,

Gf (2t)
Gf (t)

≤ (2B2)p ∀t ∈ (0, T ).
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From this, the estimate (3.2) clearly follows if we take M = (2B2)p− 1. Hence, by
our earlier remarks, the result follows. �

4. The proof of Theorem 1.2

Part (1) of Theorem 1.2 has already been established in Lemma 3.1. Therefore,
f−1 is a well-defined function. Observe that

(4.1) f−1(t) = Gf

(
1

log(1/t)

)
, 0 < t < 1.

Let R > 0 be so small that

f−1(3t/4) = Gf

(
1

log(4/3) + log(1/t)

)
≥ Gf

(
1

2 log(1/t)

)
∀t ∈ (0, R).

Let M and T be as given by (3.2) above. Shrinking R > 0 if necessary so that
0 < 1/2 log(1/t) < T ∀t ∈ (0, R), we get

(4.2)
f−1(3t/4)
f−1(t)

≥
Gf (1/2 log(t−1))
Gf (1/ log(t−1))

≥ (M + 1)−1 ∀t ∈ [0, R).

Write µ := (M + 1)−1. We are given α > 0 and N ∈ Z+. Since f(x) vanishes to
infinite order at x = 0, there exists a HN,α > 0 such that R ≥ HN,α and

(4.3) αt1/N ≤ µ

4
f−1(t) ∀t ∈ [0,HN,α).

From (4.2) and (4.3), we see that

|z|+ µ

2
f−1(t) < f−1(3t/4) ∀z : 0 ≤ |z| < αt1/N , 0 < t < HN,α,

whence the polydisc

(4.4) 4(z, t) := D
(
z;
µ

2
f−1(t)

)
× D(it; t/4) ⊂ ΩF

∀z : 0 ≤ |z| < αt1/N , 0 < t < HN,α.

Now note that that translations Ts : (z, w) 7−→ (z, s+w), s ∈ R, are all automor-
phisms of ΩF . Thus, by the transformation rule for the Bergman kernel, and by
monotonicity, we get

KF (z, s+ it) = KF (z, it)

≤ K4(z,t)(z, it)

=
1

vol (4(z, t))
∀(z, s+ it) ∈ Aα,N , 0 < t < HN,α.

The last equality follows from the fact that 4(z, t) is a Reinhardt domain centered
at (z, t). Hence, we have one half of the estimate (1.5):

KF (z, w) ≤ C1(Imw)−2
[
f−1(Imw)

]−2 ∀(z, w) ∈ Aα,N ,(4.5)
0 < Imw < HN,α,

where C1 = 64/µ2π2.
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We will now derive a lower bound. We set A := min(f−1(1), 1). For the re-
mainder of this proof, 4 will denote the polydisc D(0;A)×D(0; 1). In view of the
inequality (1.3) of Proposition 1.1, it suffices to find a lower bound forKΩF∩4(z, w)
for (z, w) ∈

(
1
24
)
. It is well known that

(4.6) KΩF∩4(z, w) = sup
φ∈A2(ΩF∩4)

|φ(z, w)|2

‖φ‖2
L2(ΩF∩4)

.

Once again, we use the fact that the translations Tu : (z, w) 7−→ (z, u+w), u ∈ R,
are all automorphisms of ΩF , whence

(4.7) KF (z, s+ it) = KF (z, (u+ s) + it) ∀(z, s+ it) ∈ ΩF and ∀u ∈ R.

Set φt(z, w) := −4t2/(w + it)2, t > 0. Then, from the localization principle (1.3),
and from (4.6) and (4.7), we get

KF (z, s+ it) ≥ δKΩF∩4(z, it)(4.8)

≥ δ

‖φt‖2
L2(ΩF∩4)

∀(z, t) ∈
(

1
24
)
.

Let us write w = u+ iv. We leave the reader to verify that we can apply Fubini’s
theorem wherever necessary in the following computation:

‖φt‖2
L2(ΩF∩4) =

∫
|z|<A

1∫
−1

√
1−u2∫

F (z)

16t4

|u+ i(v + t)|4
dv du dA(z)

≤ 16t4
∫

|z|<A

∞∫
F (z)

1∫
−1

(v + t)−4

(
1 +

(
u

v + t

)2
)−2

du dv dA(z)

≤ 8t4

∫
R

dX

(1 +X2)2

 ∫
|z|<A

(t+ F (z))−2dA(z)

= Ct4
A∫

0

r

(t+ f(r))2
dr,

where C > 0 is a universal constant. In what follows, we shall denote f−1(s) by
Rs. By equation (4.1) we have

(4.9) R√t = Gf

(
2

log(1/t)

)
, 0 < t < 1.
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We break up the interval of integration of the last integral into three sub-intervals
to compute:

‖φt‖2
L2(ΩF∩4) = Ct4

(∫ Rt

0
+
∫ R√t

Rt

+
∫ A

R√t

r

(t+ f(r))2
dr

)

≤ Ct4
∫ Rt

0

r

t2
dr + Ct4

(∫ R√t

Rt

+
∫ A

R√t

r

4tf(r)
dr

)

≤ C

2
t2(Rt)2 +

C

4
t2
∫ R√t

Rt

r dr +
C

4
t5/2A(A−R√t)

≤ C

2
t2(Rt)2 +

C

4
t5/2A(A−R√t)(4.10)

+
C

8
t2
(
G2

f

(
2

log(1/t)

)
−G2

f

(
1

log(1/t)

))
, 0 < t < 1.

We used the relation (4.9) in the estimate for the middle integral above.

We now apply Lemma 3.2 to the third term in (4.10). Let T > 0 and K > 0
be defined as given by Lemma 3.2. Let H0 be so small that 1/ log(t−1) < T ∀t ∈
(0,H0), and so that the second inequality below holds true:

‖φt‖2
L2(ΩF∩4) ≤ C

2

(
1 +

K

4

)
t2(Rt)2 +

C

4
t5/2(4.11)

≤ C(1 +K/4)t2(Rt)2 ∀t ∈ (0,H0).

Since f(x) vanishes to infinite order at x = 0, we can lower H0 — and this is
independent of parameters like α > 0 and N ∈ Z+ — so that the first term of
the first inequality above dominates the second for t ∈ (0,H0), giving us (4.11).
Lowering the value of H0 further if necessary, we also ensure:

ΩF ∩ {(z, w) : Imw < H0} ⊂ ΩF ∩4.

From (4.8) and (4.11), we conclude that there exists a constant C0, which is inde-
pendent of all parameters, such that

C0(Imw)−2
[
f−1(Imw)

]−2 ≤ KF (z, w) ∀(z, w) ∈ ΩF ∩ {(z, w) : Imw < H0}.

This establishes Part (3) of our theorem. As a special case, we get the lower bound
on KF (z, w) in the estimate (1.5). Along with (4.5), this establishes Part (2) of
our theorem. �
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